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Figure 1. The node-link diagram shown in (a) the zoomable plane and the focus+context displays, (b) hyperbolic display and (c) iSphere display.

ABSTRACT
Interactive exploration plays a critical role in large graph visu-
alization. Existing techniques, such as zoom-and-pan on a 2D
plane and hyperbolic browser facilitate large graph exploration
by showing both the details of a focal area and its surrounding
context that guides the exploration process. However, existing
techniques for large graph exploration are limited in either
providing too little context or presenting graphs with too much
distortion. In this paper, we propose a novel focus+context
technique, iSphere, to address the limitation. iSphere maps
a large graph onto a Riemann Sphere that better preserves
graph structures and shows greater context information. We
conduct extensive experiment studies on different graph explo-
ration tasks under various conditions. The results show that
iSphere performs the best in task completion time compared
to the baseline techniques in link and path exploration tasks.
This research also contributes to understanding large graph
exploration on small screens.
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INTRODUCTION
Interactive exploration is one of the major approaches for nav-
igating through large graph data, which is widely adopted
by many graph visualization systems [10, 12, 40, 42]. It has
been used for, for example, navigating through a big road
network on Google Maps or finding relational patterns such
as communities or critical paths between communities in a
large social network [10]. Various visualization and inter-
action techniques have been developed for supporting large
graph exploration, that is, the exploration of a large graph
on a relatively small screen. In particular, users can query
to find and visualize the parts of interest of a large graph in
a node-link diagram [10–12], explore an aggregated graph
via semantic zooming [2, 6, 19, 39, 47, 50], use brushing on a
graph overview to show the detailed structures in a separate
view [2, 27], or directly perform zooming and panning on a
graph in a focus+context display [42, 46].

However, most of the above techniques have limitations for ex-
ploring a large graph. For example, the query based approach
is only useful when the properties of the desired structure are
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known, so that queries can be formulated. Semantic zoom is
usually inefficient when the hierarchy of the aggregated graph
is deep. Overview+detail based approaches break the spatial
continuity of a graph representation, making it inefficient for,
for example, tracing a long path in the graph. Focus+context
displays circumscribe the aforementioned issues by showing
both the focal details and overview context smoothly and con-
tinuously within the same view, and they have been the core of
recent hybrid techniques that aim to use a small screen more
efficiently [38, 56]. Two techniques in this category, plane
(Fig. 1(a)) and hyperbolic [31, 42] (Fig. 1(b)) displays, have
been widely used for graph exploration, but also have limi-
tations. The first technique often shows too little context to
guide the exploration while the second one tends to introduce
too much distortion when displaying the graph links, making
path tracing difficult [31, 57].

To address the above issues, we introduce a novel fo-
cus+context display, iSphere (Fig. 1(c)), for supporting interac-
tive large graph exploration. It maps a node-link diagram onto
a Riemann Sphere [3] and orthogonally projects the sphere
onto a 2D plane. The produced focus+context view, similar
to the hyperbolic display, has a focal area in the middle sur-
rounded by context suppressed at the periphery of the circular
display. We compared iSphere with the plane and hyperbolic
displays in two controlled user studies, based on three graph
exploration tasks, which were designed for exploring three
fundamental graph elements: nodes, links, and paths. In partic-
ular, Study I investigated iSphere’s performance in a full-sized
window on a regular laptop computer and Study II investigated
iSphere’s performance in smaller windows, mimicking the
screen sizes of the mainstream personal-computing devices,
i.e., tablets, mobile phones, and smart watches.

The study results showed iSphere had the best performance
under several testing conditions. In particular, it significantly
outperformed the hyperbolic display in path exploration tasks
and significantly outperformed the plane display in both link
and path exploration tasks in smaller windows. These results
suggested the potential of using iSphere on mobile devices for
exploring the routes inside a large graph. Overall, this paper
has the following contributions:

• We propose a novel focus+context display for large graph
exploration, which shows more context when compared to
the plane display and better preserves graph structures when
compared to the hyperbolic display.
• We report the first, to the best of our knowledge, compre-

hensive user studies, comparing two different focus+context
techniques as well as the zoomable plane, while varying
exploration tasks, screen sizes, and graph sizes.
• We provide extensive analysis and discussion of the study re-

sults that give insight to when, why, and how different graph
displays are useful or have limitations. We further discuss
the benefit of applying iSphere on smaller screens (tablets,
mobile phones, smart watches) and how it helps users make
sense of a large graph during the exploration, which pro-
vides insight into the trade-offs between the amount of
distortion and contextual details on small displays.

GRAPH EXPLORATION TECHNIQUES
In this section, we review and compare interaction and visual-
ization techniques developed for exploring large-scale graphs

shown in node-link diagrams. We focus on the most generic
and related techniques, including (1) query based approach,
(2) semantic zoom in hierarchical graphs, (3) zooming and
panning, (4) overview+detail, and (5) focus+context. More
comprehensive and general surveys can be found in [40, 51].

Interaction Techniques
There are three generic interaction techniques that are devel-
oped for exploring a large graph, including (1) the query based
approach, (2) semantic zoom in hierarchical graphs, and (3)
zooming and panning.

Query Based Approach. Query (or search) is the simplest
approach for exploring a large graph, which has been adopted
by many graph visualization systems. Via this approach, users
can query the labels of nodes or links to find and visualize a
graph portion of their own interests. For example, FacetAt-
las [11] was designed for exploring a word co-occurrence
graph extracted from documents by querying on different
topics. g-Miner [10] supports the exploration of large multi-
variate graphs via querying on both the graph structure and
node attributes. However, query based graph exploration is
only efficient when users’ tasks are clear so that queries can be
formulated. In many real world applications, users explore the
graph without a specific goal, which cannot be accomplished
with query based approaches.

Semantic Zoom in Hierarchical Graph. Semantic zoom is
commonly used in hierarchical graph visualizations [2,6,19,39,
47, 50], in which the nodes in a large graph are hierarchically
aggregated into so-called “meta-nodes” and the graph structure
with respect to the meta-nodes is displayed. It reduces the
total number of nodes and links to be visualized at a time [20].
Usually, the first level of the hierarchy is shown by default.
When users zoom into the next level, the graph at the specified
level is visualized. In contrast to the ordinary graphical zoom,
semantic zoom not only changes the graphical representation,
but also updates the data to be displayed [54].

When compared to the query based approach, hierarchical
graph visualizations provide additional context to guide the
data navigation procedure. The meta-nodes show potential
options to be zoomed into. However, important information
such as how a leaf connects to other leaves under different
branches is still missing. Users have to zoom back and forth
to navigate through different branches. When the hierarchy is
deep or has a large fan-out, semantic zoom is inefficient.

Graphical Zooming and Panning. One solution to avoid the
inefficient semantic zoom is to flatten or even remove the
hierarchy. However, the presentation problem, i.e., the lack
of space for showing a large dataset [18], makes node-link
diagrams incapable of representing a large graph without any
aggregation. Zooming and panning [44] are the most com-
monly used interactions that address this issue. They are of-
ten used together to help users control the exploration. Many
zoomable user interfaces [9,44] have been developed, and they
are also frequently used for exploring large graph data [48].
We adopted these interactions in iSphere to support a continu-
ous exploration in a focus+context display.

Visualization Techniques
Two generic visualization design principles, overview+detail
and focus+context, are also used for exploring large graphs.
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Overview+Detail. An overview+detail user interface of a large
graph consists of multiple views with an overview (overall
view) illustrating the entire graph and other views showing
the details of the graph from different perspectives. A typical
implementation of this technique combines the two views
together based on two different approaches: (1) the overview
is displayed in a small inspection window that floats on top
of another big window with a selected portion of the graph
shown in detail (or in the opposite) [27], and (2) the details
are visualized in a small inspection lens which floats on top
of the overview window [30, 34]. The overview and the detail
view are linked together by interactions. Users can choose to
visualize the details of any part by brushing on the overview
in the first design or moving the lens in the second design.

Although simple to implement and widely used, showing
overview and details in two separated views breaks the spacial
continuity of the visual representation, making this technique
difficult for a user to, for example, trace or recall a long path
in a large graph.

Focus+Context. Focus+context [7] is another generic visual-
ization design principle that is commonly used for big data
exploration. It enables viewers to see the objects of primary
interest presented in full details while at the same time get
an overview-impression of the surrounding context. A fo-
cus+context display guarantees the spacial continuity and en-
ables a smooth data navigation via zooming and panning. Al-
though many techniques have been developed [13], here, we
only focus on those designs for representing graphs.

The simplest way for representing a large graph is to directly
show the graph in a zoomable and pannable window, in which
only a small portion of the data is shown in a focal viewport.
Users can navigate through the entire data by zooming and
panning the viewport. Distortion oriented techniques [37]
have been developed to improve this design by magnifying the
focal area while showing more surrounding context without
increasing the display size or losing the spacial continuity.
These techniques, such as the polyfocal projection [29], the
Bifocal Display [5], and various types of graphical fisheye
views [22, 37, 46] and topological fisheye views [1, 14, 25],
produce similar results in which the context regions are sup-
pressed, leaving space for showing more details in the focal
area. However, given the limited distortion rate, these ap-
proaches are incapable of transforming the entire visualization
plane into a focus+context display [41]. Besides, past user
studies on distortion techniques indicate that introducing dis-
tortion will impair users’ performance as they must remain
aware about the distortions in shape and position and men-
tally undo them when needed [23]. Therefore, the distortion
oriented techniques are often used as an interactive lens to
magnify a small focal region inside a large display [49].

There have also been hybrid focus+context techniques that
focused on how to use a small screen more efficiently. For
example, to better allocate space to display details of a user’s
interest, Li and Takatsuka proposed a context-based filtering
technique that combines the degree of interest of Logical Fish-
eye View and geometric distortion [38]. ViSizer [56] automat-
ically resizes a visualization to fit any display by combining
multi-focus+context and grid deformation to avoid feature
congestion. Such hybrid techniques are complementary as
they can be used to augment existing focus+context methods.
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Figure 2. Illustrations of (a) the orthogonal projection from a sphere
to a Euclidean plane, (b) the perspective projection from a hyperboloid
surface to the Poincaré disk, and (c) the conformal mapping from the
Riemann Sphere to a virtual plane.

Non-Euclidean geometry was used for producing a fo-
cus+context display with a much higher distortion rate. In
three dimensions, there are two types of non-Euclidean geome-
tries, namely, elliptic geometry and hyperbolic geometry [55].
Elliptic geometry can be visualized as the surface of a sphere
in the three dimensional space on which “lines” on a Euclidean
plane are shown as big circles. When the sphere is shown in a
2D display on the screen based on the orthogonal projection,
it automatically generates a focus+context display (Fig. 2(a)).
Using this technique, Kobourov and Wampler [31] extended
the traditional force directed layout to directly lay out a graph
on the surface of a sphere. Ito et al. [28] also proposed algo-
rithms for visualizing a bipartite graph on a sphere. However,
these techniques are limited by the “presentation problem” as
the surface area of a sphere is limited. Recently, Kwon et
al. [33] applied spherical graph layout in an immersion system,
but its usage on a 2D plane remains unclear.

Hyperbolic geometry can be represented by the Poincaré disk
model [21] in two dimensions. As shown in Fig. 2(b), this
model compresses the infinite surface of the forward sheet
(S+) of a two-sheet hyperboloid into a circular disk based on a
prospective projection at (0,0,-1). In this way, the point (0,0,1)
on the hyperboloid surface is projected onto the center of the
Poincaré disk. The points that are infinitely far away are pro-
jected onto the boundary of the Poincaré disk. This approach
provides an extremely high distortion rate that suppresses the
surface of S+ into a unit disk which can be displayed in an
arbitrary-sized window. In addition, when compared to other
models [4], the Poincaré disk model, also known as the con-
formal disk model, preserves angles, which is an important
property for representing structures and shapes. These nice
properties attracted attention in the field of information visu-
alization and the Poincaré disk model has been extensively
used to produce a focus+context view for exploring large tree
structures [35], graphs [31,42] (in both 2D and 3D), and multi-
dimensional data [16,53]. Besides, Kreuseler et al. [32] extend
this model by introducing additional degrees of freedom for
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exploring complex hierarchical graphs, which allows users to
change the focal area by moving the center of the projection.
These are the state-of-the-art focus+context techniques that
are most related to iSphere. However, as discussed in [31],
although the Poincaré disk model preserves angles, it distorts
lines, which makes path tracing in a graph difficult [31, 57].

iSphere circumscribes the aforementioned issues by introduc-
ing a focus+context display with a moderate distortion rate
that provides more context than the plane display and also re-
duces the distortion of links when compared to the hyperbolic
display. Our user studies showed that iSphere was efficient
for supporting graph exploration tasks and was significantly
better than the hyperbolic display in many situations.

ISPHERE VISUALIZATION
In this section, we discuss the design philosophy and technical
details about the implementation of iSphere.

Design Philosophy
iSphere was designed for visualizing and exploring large
graphs. We attempted to develop a generic technique that
can be used for all types of graphs (directed/undirected, uni-
partite/bipartite/multipartite, planar/non-planar) of different
sizes that are visualized in a node-link diagram but is inde-
pendent of any type of node-link graph layouts. To this end,
we introduced a projection based approach that transforms the
graph visualization into a focus+context display as a whole.

Specifically, we first visualize a graph on a virtual (or concep-
tual) plane (P). It has an infinite size so that graphs in any scale
can be clearly shown. We then map P onto a unit sphere S
based on the inverse of the stereographic projection [15]. After
that, S is scaled and rendered into a two-dimensional view port
based on the orthogonal projection, which transforms P into a
focus+context display. We describe the details of each step in
the rest of this section.

Placing a Graph in a Virtual Plane
The vertices of a graph can be placed onto the virtual plane
(P) by using any of the existing graph layout algorithms. This
procedure usually runs offline as most of the current layout
algorithms are inefficient when the graph is large. In our
implementation, stress majorization [24] is applied.

Mapping the Virtual Plane onto the Riemann Sphere
The virtual plane, with the graph visualized on it, is then
mapped onto the surface of a unit sphere, also known as the
Riemann Sphere (S), based on the inverse of the stereographic
projection. This projection was first introduced for producing
a map, which projects the surface of a sphere (e.g., the Earth)
onto a plane (e.g., a map). It is obtained by projecting a point
P(x,y,z) on sphere S from the sphere’s north pole N to a point
P′(X ,Y ) that intersects sphere at the equator (Fig. 2(c)). The
projection is given by the following formula:

(X ,Y ) =
(

x
1− z

,
y

1− z

)
In iSphere, we perform the inverse of this projection to map
the virtual plane onto the surface of S, formally described as:

(x,y,z) =
(

2X
X2 +Y 2 +1

,
2Y

X2 +Y 2 +1
,

X2 +Y 2−1
X2 +Y 2 +1

)

(a)

n1 n2

n3

n1' n2'

n3'

n1'' n2''

n3''

(b) (c)
Figure 3. An illustration of a triangle displayed on (a) a Euclidean plane,
(b) a Poincaré disk, and (c) a Riemann Sphere.

This is a conformal mapping, through which angles are pre-
served. As shown in Fig. 2(c), in this mapping, the plane
region inside the sphere is mapped onto the surface of the
south hemisphere, thus being magnified and becoming the
focus of the view. The plane region outside the sphere is sup-
pressed and mapped onto the north hemisphere as the context.
Particularly, all the points infinitely far away from the plane
center are compressed into the north pole.

Rendering
Usually, the south hemisphere of S is rendered in front of users
based on orthogonal projection as it displays the focal area in
the above mapping model. In our system, each node of the
graph is mapped on the sphere. However, the mapping proce-
dure can be parallelized at the pixel level while rendering on a
GPU, making it efficient and general enough for representing
any visualization shown on P beyond node-link diagrams.

When graph links are arbitrary curves (e.g., bundled arcs) on
P, they have to be rendered at the pixel level by mapping each
pixel (or densely sampling some of the pixels) in the curve
onto the sphere and connecting them by an interpolating spline
as an approximation. This procedure can also be accelerated
by a GPU. When graph links are displayed as straight line
segments on P, the rendering can be simplified based on a
property of the stereographic projection, i.e., a straight line
is mapped to a large circle on S. Therefore, a link when
visualized on S will be a circular arc segment, which can be
determined by the mapping results of the link’s endpoints and
midpoint. We implemented the second approach assuming
that all the links are straight lines on P.

Interactions
Zooming and panning are also implemented in iSphere for
navigating through the virtual plane. Users can zoom in or
out by decreasing or increasing the radius of S to exclude or
include the content inside the focal area (i.e., the south hemi-
sphere). They can also pan the graph on S based on the Möbius
transformation [17]. Another equivalent implementation of
these interactions is to keep S unchanged and simply zooming
and panning on the virtual plane. The mapping is refreshed
in each mouse operation. Both methods provide a smooth
and continuous transforming effect. Especially, the effect of
panning on iSphere looks like the rotation of a sphere, which
was preferred by most of the participants in our user studies.

Comparing to the Hyperbolic Display
A hyperbolic based focus+context display [31,35] shares many
similar properties and functions with iSphere. First, both of
them distort the original Euclidean plane into a circular fo-
cus+context display in which the center region is magnified for
showing the focus and the surrounding region is suppressed
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for the context. Second, they both provide a conformal trans-
formation, so that the graph structures are preserved on these
displays. Third, they both map an infinite information space
(i.e., S+ on a Poincaré disk and P on a Riemann Sphere) into a
unit display that can be visualized in windows of any size.

They also have many distinct properties. First, the hyperbolic
display has a much higher distortion rate. Intuitively, it maps
points infinitely far away in the information space onto the
edge of a Poincaré disk, making the entire space visible to
users. In this case, high-level topology tasks such as identi-
fying clusters may be easier. However, the heavy distortion
impacts user interaction as small movements can trigger big vi-
sual changes. In contrast, iSphere maps the information space
onto a 3D Riemann Sphere, which is orthogonally projected
onto a 2D display, thus only showing half of the sphere (i.e.,
information space) and hiding nodes that are far away from
the focus. Second, on a Poincaré disk, a hyperbolic line is
an arc of a Euclidean circle contained within the disk that is
perpendicular to the boundary of the disk, which is different
from the line shown on a Riemann sphere as discussed above.
Third, hyperbolic geometry has a constant negative sectional
curvature, whereas the Riemann Sphere’s is always positive.
These properties lead to different representations of a struc-
ture. As illustrated in Fig. 3, a triangle on a Euclidean plane is
shown differently on a Poincaré disk (curving inward) or on a
Riemann Sphere (curving outward).

In the following sections, we will investigate how these prop-
erties affect users’ performance in graph exploration tasks.

EXPERIMENT DESIGN
In this section, we introduce the design of the user studies and
provide rationales for the key design decisions based on our
pilot studies and literature survey.

Baselines
In the studies, we compare the different displays introduced
above (Fig. 1), including the plane display (Dp), the hyper-
bolic display (Dh), and the proposed iSphere display (Ds). All
of them support zooming and panning (Fig. 4) and were imple-
mented in Java. In particular, developing a two dimensional
hyperbolic display for showing a generic graph visualization
is non-trivial as the original system was introduced for rep-
resenting and exploring a tree or a tree-like graph [35] based
on a radial layout. To ensure a fair comparison, we kept the
layout method (i.e., the stress majorization [24]) unchanged in
all three displays. We implemented the projection techniques
introduced in [31] and implemented zooming by adjusting
distances between nodes based on the Poincaré metric [8] and
panning based on the Möbius transformation [17].

Tasks
Following the task taxonomy of graph visualizations [36],
we designed three graph exploration tasks in our studies that
respectively focused on exploring nodes, links, and paths:

T1: Finding target(s) in the neighbors of a given node (node
exploration). Given a node A, find a target node B with
the highest degree in A’s neighborhood.

T2: Finding target(s) in the common neighbors of two given
nodes (link exploration). Given two nodes A and B, find a
target node C with the highest degree among the common
neighbors of A and B.

D D Dp h s

1x

2x

4x

Figure 4. Illustrations of the zooming effect of Dp, Dh, and Ds. The
graph contains 512 nodes and 4,096 links.

T3: Finding target(s) on a given path (path exploration).
Given a path from node A to node B, find a target node C
with the highest degree among the nodes on the path.

All these tasks were designed to investigate a wide-range
exploration of the graph via zooming and panning in both the
plane display and focus+context displays, so that the displays’
pros and cons can be revealed. For example, to find the most
connected neighbor of a given node A in a large graph, users
must zoom into details and pan around to see and compare
different neighbors of A. A distortion based focus+context
display might be helpful as it shows more context that guides
the navigation when compared to the plane display. Here,
users were asked to select one single target instead of multiple
targets (e.g., all the neighbors of a node) in order to minimize
their operations. Fixing the target number also ensures a
fair comparison of the task completion time in all cases, as
selecting different amounts of targets will cost different length
of time which could confound the study results. We did not
include high-level topology tasks (e.g., identifying clusters)
since our pilot users were able to complete them easily through
zooming functions. When the zooming factor is small enough,
all three techniques look quite similar, which makes such tasks
not differentiable and less informative.

Variables
The primary variable to test in the user studies was the three
different displays shown in Fig. 1. In addition, a display’s
capability of supporting the exploration of a large graph can
be affected by the size and community structure of the graph,
as well as the size of the display window—these are additional
variables used for generating different testing conditions in
our studies. In particular, we applied the graph data model
introduced by Sah et al. [45] to produce undirected random
graphs whose sizes and community structures were precisely
controlled for different testing conditions. We also chose to
use four different window sizes in the studies. In addition,
a pilot study with 4 users was conducted to determine many
other conditions that may affect users’ performance.

Big Data Intelligent Visualization Systems CHI 2017, May 6–11, 2017, Denver, CO, USA

2920



We did not include distortion lens based techniques in the ex-
periments because such techniques alone are often insufficient
to cover a relatively large virtual plane. To make the study
conditions comparable, we have to use the lens on top of a
zooming and panning display, but this setting confounds with
other factors—it is hard to tell if the changes in performance
are caused by the distortion lens or the zooming and panning.
Therefore, we focused on techniques that are able to display an
infinitely large virtual plane directly. We believe a distortion
lens is more like a widget instead of a display, which can be
attached to all three types of displays described in this paper.

Graph Size. We controlled the graph size via two parameters:
the number of nodes and the average degree of the graph. We
tested a wide range of different choices in the pilot study and
selected the parameters that best differentiated users’ perfor-
mance. In particular, we chose graphs with at most 2,048
nodes to ensure that all the tasks can be completed by users
in approximately 30 seconds. To the best of our knowledge,
this is the largest graph scale that has ever been tested in a con-
trolled user study. However, such graph size is still far from
“big.” To investigate the scalability of each display while keep-
ing the tests to be completed within a bearable time for users,
we proposed to conduct a scale-up experiment to illustrate the
performance trends when the size of the graph is exponentially
increased. Specifically we tested users’ performance based
on small graphs (27 = 128 nodes), medium graphs (29 = 512
nodes), and large graphs (211 = 2,048 nodes) in a row. In
addition, we chose 8 as the average degree as it produced the
most feasible tasks according to our pilot users—neither too
dense nor too sparse. Accordingly, the number of links of a
small/medium/large graph was set to 1,024/4,096/16,384.

Graph Structure. We controlled the community structure
of a graph based on modularity [43], which is a measure-
ment designed to estimate the strength of the division of a
graph into clusters. Intuitively, a graph with a high modular-
ity shows clear modular structures (i.e., clusters) (Fig. 5(a)),
whereas, a graph with a low modularity shows no clear struc-
tures (Fig. 5(b)). We tested a wide range of modularity scores
in the pilot study and selected 0.3 and 0.6 as low and high
modularity scores, respectively. We also fixed the number of
clusters to be three in the testing graphs to produce testing
cases with a moderate difficulty.

Window Size. We displayed the generated graphs inside areas
of four different sizes to mimic the screen sizes of the main-
stream personal-computing devices, i.e., laptop computers,
tablets, mobile phones, and smart watches. Particularly, we
chose the window size for mimicking laptop computers to
be 1,366× 768 pixels (361× 203 mm on a standard 96 dpi
display), which is the most common screen size according to
the latest display statistics [52]. We also chose to use iPad Air,
iPhone 6, and iWatch to represent tablets, mobile phones, and
smart watches, whose screens are 148× 197 mm, 58× 104
mm, and 36×42 mm in dimension, respectively.

In the pilot study, we also found that despite the graph size,
graph modular structure, and window size, the difficulty of
a task also heavily depends on the number of nodes needed
to be explored and their distributions in the testing graph. To
control the difficulty, we fixed these factors when producing
the testing data. In particular, we selected a node A whose
degree was 15 and neighbors were scattered inside different

(b) Modularity=0.3 (a) Modularity=0.6
Figure 5. Examples of (a) a high-modularity graph and (b) a low-
modularity graph, both of size 128 nodes and 1,024 links.

clusters for T1, selected two nodes A and B belonging to
different clusters and sharing exactly three common neighbors
for T2, and selected a path with the length of 5 and all its
containing nodes scattered in three different clusters for T3.
These parameters were determined in the pilot study to ensure
a moderate difficulty of each task.

Study Conditions
A full investigation of the above independent variables and
tasks leads to a total of 648 testing trials1 for each participant,
which takes about five hours to finish, thus making the study
impossible to be conducted. To reduce the fatigue issue and
ensure the quality of the results, instead of testing all the
conditions at once, we designed two within-subject studies2

in a row to cover different testing conditions.

Study I tests how different techniques (Dp, Dh, Ds), graph
sizes (small, medium, large), and modularity settings (low,
high) affect a user’s performance on exploring a graph. We
used a full-sized window on a regular laptop computer (i.e.,
1,366×768 pixels). In this study, each participant needed to
perform 54 study trials three times, once for each of the three
tested graph exploration techniques, yielding a total of 2,916
(18×3×54) trials as summarized in Table 1.

Study II tests how different window sizes (i.e., tablet, mobile
phone, smart watch) affect a user’s performance on exploring
a large graph using Ds or Dp. Here, we chose to only use
large graphs to increase the difficulty of the tasks. We also
eliminated the cases of using Dh given its poor performance on
small screens according to our pilot study (several users even
failed to complete the tasks using Dh when the screen is of the
size of a smart watch). In this way, as summarized in Table 1,
each participant needed to perform 54 study trials twice, once
for each tested graph exploration technique, yielding a total of
1,944 (18×2×54) trials.

Study I Study II
Techniques Dp, Dh, Ds Dp, Ds
Tasks T1, T2, T3 T1, T2, T3
Window Sizes Laptop Computer Tablet, Phone, Watch
Graph Sizes Small, Medium, Large Large
Graph Modularities Low, High Low, High
Repetitions 3 3
Participants 18 18
Total trials 2,916 1,944

Table 1. The design of the study trials.
13 (techniques) × 3 (tasks) × 4 (window sizes) × 3 (graph sizes) ×
2 (modularities) × 3 (repetitions) = 648 trials.
2The two studies were designed and conducted separately. Study II
was designed following the suggestions from Study I’s participants.
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Hypotheses
In the studies, we were interested in comparing the effec-
tiveness of the plane display and two different focus+context
displays in supporting large graph exploration. We believed
that when the graph is small or the window is large, they would
make little difference. However, when the size of the graph
increases or the size of the window decreases, preserving the
graph context properly becomes critical as it can guide users’
navigation and help them find the target more efficiently.

As discussed previously, the three tested displays preserve dif-
ferent amounts of context in the periphery of the view ports in
different ways. Dh has the highest distortion rate, in which the
entire graph is shown in the display with a part in the center
as the focus surrounded by the remaining graph suppressed
as the context. Ds has a lower distortion rate, in which only
the related part is shown as the context, surrounding the fo-
cal area. Dp has no distortion, showing the least amount of
context. On one hand, a higher distortion rate increases the
amount of context that can guide the data exploration. On
the other hand, it also leads to more curved graph links and
distorted graph structures, and unfavorably impacts interac-
tion by triggering big visual changes, which may affect users’
performance. Therefore, an effective graph exploration lies in
balancing these two factors. In the following, we hypothesize
the impact of different techniques (Dp, Dh, Ds in Study I and
Dp, Ds in Study II) on graph exploration with different graph
conditions and window sizes.

Among the three displays, Dh and Ds provide more contextual
information (Dh the most) than Dp, thus better facilitating the
node exploration task. Hence, we hypothesize:

H1(a): Dh is more effective than Ds and Dp in performing T1
when graph size increases in Study I.

H1(b): Ds is more effective than Dp in performing T1 when
window size decreases in Study II.

Meanwhile, Ds shows more context than Dp and its links are
less distorted when compared to Dh. Hence, we hypothesize
that for the link and path exploration tasks, it will perform
better than the other two techniques:

H2(a): Ds is more effective than Dh and Dp for T2 when
graph size increases in Study I.

H2(b): Ds is more effective than Dp for T2 when window size
decreases in Study II.

H3(a): Ds is more effective than Dh and Dp for T3 when
graph size increases in Study I.

H3(b): Ds is more effective than Dp for T3 when window size
decreases in Study II.

Besides graph size, in T3, users’ performance will also be
affected by graph topological structure: when the modular
structure in the testing graph is clear, Dp will perform the best
as it best preserves the structure without any distortion. When
the modular structure is unclear, users will benefit from the
focus+context displays with distortion and we believe Ds will
perform the best given its moderate distortion rate:

H4: Dp is more effective than Dh and Ds in performing T3
when modularity is high.

H5: Ds is more effective than Dh and Dp in performing T3
when modularity is low.

USER STUDY
We conducted the user studies designed above with a total
of 36 participants. In this section, we will describe the study
procedure and results, and discuss our findings.

Participants and Apparatus
We recruited two groups of 18 volunteers to participate in
Study I (12 males, 6 females; aging from 23 to 34, M = 26.55,
SD = 3.03), and Study II (11 males, 7 females; aging from 19
to 25, M = 20.44, SD = 1.54), respectively. All participants
were students or researchers in computer science with normal
or corrected-to-normal vision.

The experiments were conducted on a laptop computer
equipped with a mouse, a keyboard, and a 15.4-inch dis-
play with 1,440× 900 pixels and 60 Hz refreshing rate.
Graph visualizations were displayed in a window with a
white background. Graph nodes were black dots. The
size of each node reflected its degree, formally defined as
radius = 2× log2 (degree+1) pixels. Graph links were black
lines of one pixel in width. Our study system supports picking
and selection mechanisms [26] to assist users’ exploration. In
particular, when the mouse hovers over a node in the graph,
the node and its adjacent links are highlighted in blue. When
the mouse clicks on the node, the highlighting will persist
until the next click. As suggested in [26], these interactive
enhancements can help users focus on graph elements and
reduce the frustrations caused by getting lost in a graph.

Procedure
At the beginning of each study, we introduced the tested graph
exploration techniques to the participants and showed them
how the same graph is displayed differently using each tech-
nique (Fig. 1). This helped them get familiar with the visual-
izations and get some intuition about how the graph display
is distorted in each technique. Then, we explained the three
graph exploration tasks to the participants and showed them
how to perform the tasks using our study system. In particu-
lar, users can zoom and pan the display to navigate through
a graph and can select a node to highlight its adjacent links.
In each task, we guided users’ exploration by highlighting a
node whose neighbors needed to be explored (T1), two nodes
whose common neighbors needed to be explored (T2), or a
path whose containing nodes needed to be explored (T3).

Before the formal study, the users needed to perform practice
trials to ensure a full understanding of all the tasks. The
trials covered the three tasks and the tested graph exploration
techniques, using three small-size graphs (128 nodes, 1,024
links, 0.3 modularity). We encouraged the participants to ask
questions and provided solutions of the practice trials.

After the training and practice, we conducted the formal study.
We counterbalanced the order of the techniques using a 3×3
or 2×2 Latin Square in Study I and Study II, respectively. The
order of the study trials for each technique was randomized.
We reused the same set of graphs for all three techniques to
ensure a fair comparison. We mirrored and rotated a graph
before reusing it, which ensured that the participants were
unable to memorize the correct answers. Each study trial had
a 40-second limit and each formal study session took about
60 minutes. Participants can take a break after completing the
trials for each technique. We conducted Study I and Study II
separately at different times and Study I was conducted first.
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Figure 6. Node exploration task (T1) results of Study I. Error bars rep-
resent 95% confidence intervals (CIs).
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𝝌2 (2)=6.62, p=.03

Figure 7. Link exploration task (T2) results of Study I. Error bars are
95% CIs. Rows with significant results are in a white background.

Collected Data and Statistical Analysis
We recorded the task completion time and accuracy (1 if the
target node was found; otherwise, 0) to measure users’ perfor-
mance in each of the study tasks. We normalized the comple-
tion times with a log-transformation and applied the Repeated
Measures ANOVA test to compare the means across multi-
ple techniques, with paired t-test for pairwise comparisons.
Since the accuracy results did not follow a normal distribu-
tion, we analyzed them using the Friedman test and pairwise
Wilcoxon test. The normality of the data was determined by
Shapiro-Wilk test. All tests used a significance level of .05.

Results of Study I
The study results were summarized in Fig. 6-8. We broke
down the results by graph modularity (low = 0.3, high = 0.6)
and graph size (small, medium, large).

T1: Node Exploration Task
Accuracy: There was no significant difference in accuracy
among the displays in all the conditions (Fig. 6(a,c)).

Completion Time: We also did not find significant difference
in task completion time among different techniques in all the
testing conditions (Fig. 6(b,d)).

Overall, these results rejected H1(a). The three displays had
similar performances in T1.

T2: Link Exploration Task
Accuracy: In low-modularity condition (Fig. 7(a)), signifi-
cant differences were detected when the graph size was large

(a) Mean accuracy (low modularity) (b) Mean time (low modularity)

(c) Mean accuracy (high modularity) (d) Mean time (high modularity)
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Figure 8. Path exploration task (T3) results of Study I. Error bars are
95% CIs. Significant rows are highlighted in a white background.
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Figure 9. Ranking results for the three graph exploration techniques.

(χ2(2) = 6.62, p = .03). Post-hoc analysis showed that Ds
(M = .85) and Dp (M = .87) were significantly more accurate
than Dh (M = .70). In high-modularity condition (Fig. 7(c)),
the three displays had similar accuracies.

Completion Time: We did not find any significant difference
in all the graph conditions in completion time.

Overall, Ds was more accurate than Dh in T2 when the modu-
larity was low and graph was large, partially supporting H2(a).
No significant differences were found between Ds and Dp.

T3: Path Exploration Task
Accuracy: As shown in Fig. 8(a,c), when the graphs were
large, significant differences existed in both low (M(Dp) =

.98,M(Dh) = .81,M(Ds) = 1; χ2(2) = 14.25, p < .01) and
high (M(Dp) = .90, M(Dh) = .72, M(Ds) = .94; χ2(2) =
13.11, p < .01) modularity conditions. In the case of medium
graphs, it only existed when the modular structure in the test-
ing graphs was unclear with a low modularity (M(Dp) = .98,
M(Dh) = .83, M(Ds) = 1; χ2(2) = 14.25, p < .01). No sig-
nificance was found in all conditions with small graphs.

Completion Time: The completion time results were reported
in Fig. 8(b,d). In the low-modularity condition, we found
significant differences among the three displays when the
graphs were medium (M(Dp) = 12.03s, M(Dh) = 18.35s,
M(Ds) = 11.49s; F2,34 = 18.25, p < .01) or large (M(Dp) =
17.35s, M(Dh) = 21.96s, M(Ds) = 16.81s; F2,34 = 4.29, p =
.02). In the high-modularity condition, significant differ-
ences also exist in graphs that were medium (M(Dp) = 13.96s,
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Figure 10. Node exploration task (T1) results of Study II. Error bars are
95% confidence intervals (CIs).
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Figure 11. Link exploration task (T2) results of Study II. Error bars are
95% CIs. Rows with significant results are in a white background.

M(Dh) = 18.51s, M(Ds) = 14.11s; F2,34 = 8.88, p < .01) or
large (M(Dp) = 23.44s, M(Dh) = 26.03s, M(Ds) = 20.34s;
F2,34 = 3.67, p = .03). Post-hoc analysis showed that in both
modularities Ds and Dp were significantly faster than Dh in
medium graphs, and only Ds was significantly faster than Dh
in large graphs.

Overall, Ds and Dp had better performances than Dh in T3,
especially when the graph size increases. The above findings
partially supported H3(a) and H4-5.

Post-Study Questionnaire
Users were asked to complete a questionnaire for ranking
the three different displays according to their effectiveness in
supporting (Q1) node exploration, (Q2) link exploration, (Q3)
path exploration, and (Q4) large graph exploration as well as
according to their (Q5) ease of use and (Q6) the users’ overall
preference, regarding the conditions tested in Study I. Overall,
all the results ranked Ds as the best and Dh as the worst. The
detailed results were summarized in Fig. 9.

Results of Study II
Fig. 10-12 summarized the results of Study II. We broke down
the results by graph modularity (low = 0.3, high = 0.6) and
window size (watch, phone, tablet), and controlled the graph
size to be large (2,048 nodes, 16,384 links) in all study trials.

T1: Node Exploration Task
Accuracy: We found no significant difference in accuracy
between Dp and Ds in all testing conditions (Fig. 10(a,c)).

(a) Mean accuracy (low modularity) (b) Mean time (low modularity)

(c) Mean accuracy (high modularity) (d) Mean time (high modularity)
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Figure 12. Path exploration task (T3) results of Study II. Error bars rep-
resent 95% CIs. Significant rows are highlighted in a white background.

Completion Time: No significant difference was found in task
completion time in all testing conditions (Fig. 10(b,d)).

Overall, the results rejected H1(b) and showed Dp and Ds had
similar performance in T1 in windows of different sizes.

T2: Link Exploration Task
Accuracy: No significant difference in accuracy was observed
between the two displays in all conditions (Fig. 11(a,c)).

Completion Time: When the graph modularity was low
(Fig. 11(b)), the mean completion times of Ds were 30.71s and
27.99s when displayed in a window of phone size or tablet size,
which was significantly faster than Dp whose mean times were
34.19s and 30.54s, respectively. In the condition of high mod-
ularity and phone-size window (Fig. 11(d)), Ds (M = 32.37s)
also significantly outperformed Dp (M = 35.10s).

Overall, Ds was faster than Dp in T2, especially when dis-
played in smaller windows, which supported H2(b).

T3: Path Exploration Task
Accuracy: We did not observe significant differences in accu-
racy in the path exploration task (Fig. 12(a,c)).

Completion Time: As shown in Fig. 12(b,d), when the graph
modularity was low, study trials using Ds cost significantly
shorter time than Dp for all window sizes: watch (M(Ds) =
25.36s, M(Dp) = 27.34s), phone (M(Ds) = 22.00s, M(Dp) =
24.39s), and Tablet (M(Ds) = 19.90s, M(Dp) = 22.44s).
When the modularity was high, Ds also performed signifi-
cantly better than Dp when using windows of phone (M(Ds) =
24.02s, M(Dp) = 26.88s) and tablet sizes (M(Ds) = 22.11s,
M(Dp) = 25.19s).

Overall, these results indicated that Ds was faster than Dp in T3
under both modularity conditions, which partially supported
H3(b) and H5, but contradicted H4.

Post-Study Questionnaire
A post-study questionnaire was also conducted after Study
II, in which we asked the users to select the more effective
technique between Dp and Ds when they were displayed in
windows of different sizes. More users chose Ds to be more
effective for windows of watch size (10 out of 18) and phone
size (11 out of 18). However, for windows of tablet size, 12
out of 18 users thought Dp was more effective.
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DISCUSSION
Our user study results provided valuable insights into when,
why, and how different focus+context techniques and the
zoomable display are useful or have limitations in different
situations, which will be discussed in this section.

Why was Dh considered as the worst technique in Study I?
In the questionnaire, Dh was considered as the least effective
tool in supporting large graph exploration (Q4). One user men-
tioned that “it is very difficult to traverse all neighbor nodes
in hyperbolic layout because the relative distance between the
nodes keeps changing.” Another user said “the shape of the
graph changes greatly even [after] applying minor panning
interaction.” Some other users also complained that “the [dis-
torted] links confused me; it is hard to predict the direction
I am moving to.” All these complaints were due to the same
issue—the severe distortion in Dh that brought too much vi-
sual clutter, especially during the graph navigation. Just like
some users suggested: “Hyperbolic is poor for interactions; it
might be useful if the graph is static (not interactive).”

Why was Ds only conditionally superior than Dp in Study I?
It was a surprising finding in Study I that Ds showed no sig-
nificantly better performance when compared to Dp. To inves-
tigate the reasons, we informally interviewed the users who
ranked Dp as the most effective in Q1-3. All of them felt that

“tracing on a straight line is more intuitive and effective than
tracing on a curve.” It seems that this benefit made up Dp’s
limitation of showing too little context when the exploration
tasks were simple (e.g., T1 and T2). However, according to the
study results, Dp was not scalable when users were required
to trace a long path. As shown in Fig. 8, there was a clear
trend of dropping performance when the graph size increased.
This was also confirmed by users’ comments: “It seems I
need to spend more time on tracing on a long path in a large
graph [on Dp]; when the path is too long, I cannot remember
the previous candidates, ..., showing more context helps me
to memorize.” Therefore, we believe Ds will outperform Dp
when exploring a large graph in real world situations.

Why was Ds the most popular among users in Study I?
In Study I, although Ds only performed slightly better than Dp,
it was a technique that provided much better user experience
and favored by most of our users (16 out of 18). One user said
that “sphere’s magnification [of the focal area] helps me see
details at current focus; for the plane display, I need to zoom
in to achieve the same level of detail, ..., for large dataset, the
sphere looks less dense than the other two [techniques], so
it makes the exploration easier.” Some users also mentioned
that “sphere shows more things in the limited space.” One
user said “[when using iSphere] less interactions were needed
especially for finding common neighbors and tracking paths.”
In addition, many users particularly favored the effect of the
panning operation on Ds, which looked like sphere rotation
and was considered to be easier and more interesting to oper-
ate by our users. The users also believed it is more efficient:

“The center view of the sphere automatically expands the dis-
tances between nodes; I only have to rotate the sphere without
zooming in [to see the details].”

Why did Ds outperform Dp on smaller windows in Study II?
After Study II, we informally interviewed the users who con-
sidered Ds to be more effective than Dp in the questionnaire

questions. One commonly reported reason was that “sphere
needs less drag and zoom operations,” as a user explained

“you need to drag and zoom a lot if the screen cannot show
many nodes at a time, ..., sphere can show more nodes on
the screen, so it requires less operations.” Another potential
reason was raised that “sphere looks less crowded than plane.”
One user mentioned “the sphere is less distracting because it
makes the screen seem larger,” and another said that “it was
more efficient to use sphere for tracing paths because it can
avoid being too crowded around the paths you are tracing.”
Besides, a user was concerned about large screens and com-
mented that “if all nodes can be displayed clearly, follow links
in a plane display is easier because the lines are straight.”

When should iSphere (Ds) be used?
We believe when producing a focus+context display for ex-
ploring graphs, choosing a technique with a proper distortion
rate is important. A high distortion rate will capture more con-
text information but will also severely distort the information
space, which significantly harms users’ perception. According
to the above user study and questionnaire results, we believe
iSphere is a proper solution, which assists in exploring graphs
especially for performing path-tracing related tasks when the
screen is small or the graph is large and has unclear modu-
lar structures (i.e., when there are more details to memorize).
Our findings suggested that iSphere can be used as a better
alternative to the traditional plane based graph visualization
techniques (Dp) as it has a similar or better performance, pro-
vides better user experiences, and has a better scalability.

CONCLUSION
In this paper, we have presented a novel focus+context tech-
nique, iSphere, to facilitate large graph exploration. Specif-
ically, iSphere maps a node-link diagram onto a Riemann
Sphere and orthogonally projects the sphere into a 2D plane.
The produced focus+context view, similar to the hyperbolic
display, has a focal area in the middle surrounded by context
suppressed at the periphery of the circular display. We con-
ducted two comprehensive controlled user studies to compare
iSphere with two state-of-the-art baseline techniques, plane
display and hyperbolic display, based on three graph explo-
ration tasks. The user study results showed that iSphere signifi-
cantly outperformed the hyperbolic display in path exploration
tasks and the plane display in link and path exploration tasks
in smaller windows. Based on the results, we have discussed
when, why, and how different focus+context techniques and
the zoomable display are useful or have limitations.

Our study results revealed great potentials of using iSphere
in mobile devices. Besides, many promising future directions
worth pursing, including (1) comparison of iSphere with other
focus+context techniques in a wider range of graph explo-
ration tasks, (2) study of iSphere when its graph links are not
distorted and drawn as straight lines, and (3) study of the gener-
alizability of iSphere and applying it to improve visualizations
beyond graph explorers.
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