
1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

EventThread: Visual Summarization and Stage Analysis of
Event Sequence Data

Shunan Guo, Ke Xu, Rongwen Zhao, David Gotz, Hongyuan Zha, and Nan Cao

Fig. 1. EventThread system summarizes event sequence data into threads that are segmented into stages and clustered into latent
stage categories, thus showing the evolution patterns of the event sequences. This figure shows different car maintenance patterns
analyzed based on 1,112 car service records consists of 66 individual car maintenance events in 6 distinct event types. This figure
illustrates cars use full-synthetic or premium oil usually have a better condition when compared with the cars use semi-synthetic oil.

Abstract— Event sequence data such as electronic health records, a person’s academic records, or car service records, are ordered
series of events which have occurred over a period of time. Analyzing collections of event sequences can reveal common or semantically
important sequential patterns. For example, event sequence analysis might reveal frequently used care plans for treating a disease,
typical publishing patterns of professors, and the patterns of service that result in a well-maintained car. It is challenging, however,
to visually explore large numbers of event sequences, or sequences with large numbers of event types. Existing methods focus on
extracting explicitly matching patterns of events using statistical analysis to create stages of event progression over time. However,
these methods fail to capture latent clusters of similar but not identical evolutions of event sequences. In this paper, we introduce a
novel visualization system named EventThread which clusters event sequences into threads based on tensor analysis and visualizes
the latent stage categories and evolution patterns by interactively grouping the threads by similarity into time-specific clusters. We
demonstrate the effectiveness of EventThread through usage scenarios in three different application domains and via interviews with
an expert user.

Index Terms—Visual Knowledge Representation, Visual Knowledge Discovery, Data Clustering, Time Series Data, Illustrative
Visualization

1 INTRODUCTION

Event sequences, such as those found in electronic health records,
person’s academic behaviors, or car service records, record an ordered
series of events which have occurred over a period of time. For instance,
electronic health records contain sequences of timestamped medical
events (e.g., diagnoses, lab tests) for specific patients that are recorded

• Shunan Guo is with East China Normal University. E-mail:
g.shunan@gmail.com

• Ke Xu is with the Hong Kong University of Science and Technology. E-mail:
kxuak@connect.ust.hk

• Rongwen Zhao is with the iDVx Lab, Tongji University. Email:
rongwen.zhao@tongji.edu.cn

• David Gotz is with University of North Carolina at Chapel Hill. Email:
gotz@unc.edu

• Hongyuan Zha is with East China Normal University. Email:
zha@sei.ecnu.edu.cn

• Nan Cao is with the iDVx Lab, Tongji University and is the corresponding
author. Email: nan.cao@tongji.edu.cn

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

over the course of a clinical process. Similarly, data capturing the career
behaviors for an employee can include a series of milestone events (e.g.,
educational attainment, promotions, performance awards) while the
service records of a car can consist of dates and types of service (e.g.,
oil changes and tire replacements) over a vehicle’s lifespan.

Due to the importance and wide areas of application for event se-
quence data, a rich variety of both analysis and visualization techniques
have been developed to help yield insights from this form of data.
In particular, a variety of proposed analysis-based approaches have
focused on either (1) summarization of large-scale event sequence
data [3, 4, 18, 28], or (2) the extraction of latent “milestone” stages
that occur frequently within a set of event sequences [9, 10, 15]. They
produce highly summarized results which can highlight interesting
high-level structures, but often fail to show important low-level event
details (such as the raw, individual event features that contribute to an
aggregate summarization) which can help in the crucial task of semantic
interpretation of the discovered structures.

In contrast, much of the event sequence visualization designs [12,
34, 35]) focus on precisely capture details about how individual events
occur in sequence over time. This has led to recent methods which focus
on prioritization [12] or simplification [23] to enable these approaches
to scale to the complexity required for many real-world tasks. Yet even
in these cases, the visualized paths of event sequences are closely tied

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

to the low-level representation of individual events or sub-sequences,
which makes it difficult to discover or understand higher-level structures
within the data [11].

Therefore, there is a gap between the capabilities of existing analysis
and visualization techniques designed for temporal event sequence
data. A desired visual analysis system should be able to discover and
communicate latent high-level structures within a complex collection
of event sequence data, while at the same time providing users with
information about the low-level events and sub-sequences of events
which characterize those structures to support semantic interpretation
of the findings.

However, designing such a system is a complex problem due to
the following challenges: First, the analysis of sequences with a large
number of different event types, occurring in different orders, and
in sequences of different lengths, must occur within an enormously
complex data space. It requires techniques that can transform large-
scale heterogeneous event sequence data into an uniform data model
without losing detailed information. Second, the methods designed
to detect and represent high-level latent structures (e.g., the overall
clinical pathway of a specific cohort) must be designed to include
sufficient relevant context to enable low-level semantic interpretation of
what those structures represent (e.g., detailed events in each extracted
clinical paths). This requires the design of an analysis algorithm that
automatically associate and correlate the analysis results (i.e., the high
level structures) with the detailed data used to generate them during the
computational process. Third, because there is often little ground truth
information available to validate the results, it is important to create
methods which allow users to tune parameters to experiment with the
sensitivity of the extracted structures and their explanations to changes
in parametrization.

To address the above challenges, we introduce EventThread, a com-
prehensive and integrated visual analysis system that is designed and
developed for visually summarizing large scale and high-dimensional
event sequence data. It allows interactive exploration of analytically
discovered innate latent stages.The system is designed to support a
number of event sequence analysis tasks including: clustering, pattern
discovery, and stage analysis. Moreover, the system provides a suite
of rich contextual visualizations to help with interpretation and data
exploration. In its primary approach to this analysis problem panel, the
system groups event sequences into representative threads based on
tensor analysis in an offline procedure. The threads are further grouped
into latent stage categories at different stages (time periods) based on
an optimization-based layout algorithm and an interactive online clus-
tering algorithm. A novel visualization is designed to represent these
threads and their co-evolution over time, and linked side views showing
contextual information that is coordinated with users’ visual selections.
More specifically, this paper describes the following contributions:

• System. We introduce a dynamic visual analysis system based
on event sequence clustering via tensor decomposition to provide
a visual summarization of event sequence data. This approach
detects latent stages and captures the evolution of these stages
with respect to the detailed features of supporting events.

• Analysis. We introduce an unsupervised analysis algorithm and
the corresponding data modeling and transformation techniques
for detecting sequential clusters of highly summarized and se-
mantically meaningful latent stages from event sequence data. In
particular, we transform the raw data into a tensor and preform
a back-end orthogonal tensor analysis to derive event threads.
These threads are a form of temporal clusters which can be traced
from one time stage to the next, and adjusted via an interactive
online clustering algorithm.

• Visualization. We employ a novel visualization metaphor which
adopts a line map design which seamlessly represents the over-
lapping and interacting semantic concepts associated with the
threads are various stages of time. An optimization-based layout
algorithm is proposed which balances between the similarity of
threads and the crossing of lines to place the visual representation
of each thread at a proper position at each stage.

• Evaluation. We demonstrate the effectiveness of EventThread
system through usage scenarios with real-world data in three

distinct application domains. We also report feedback from an
interview with an expert from the medical domain.

2 RELATED WORK

This section provides an overview of research that is most closely
related to our work, including (1) analysis methods for event sequence
summarization and stage identification, and (2) techniques for event
sequence visualization.

2.1 Event Sequence Analysis
Various analytical methods have been developed to support the analysis
of event sequence data. These methods target a variety of different
analysis applications including event sequence clustering, classification,
pattern discovery, and prediction. We summarize a variety of methods
focused on two specific types of problems most relevant to this paper:
event summarization, and stage analysis.

Event Sequence Summarization. Generally speaking, the objec-
tive of event sequence summarization is to find the best method for
grouping similar sequences based on their semantic content and prox-
imity on the timeline [28]. Such summarization methods can help
users perform more efficient pattern discovery and minimize the effort
required for data comparison. For example, Osato et al. [26] used
BLAST to compare similarity between cDNAs in order to cluster them
into distinct family genes. Huang et al. [14] partitioned event logs in
medical data into optimal time intervals and summarizes the segments
horizontally so as to reveal common patterns within multiple clinical
pathways. Mori et al. [24] utilized Hidden Markov Models to directly
cluster segments of human behavioral records on social media for the
purpose of summarizing human daily life.

A variety of different approaches have been taken to address the
event sequence summarization challenge. For example, Pham et al. [28]
proposed an event substitution algorithm which in each time interval
replaces a variety of related events with a single representation. This
approach leverages a pre-defined taxonomy of the event domain, which
can be difficult to define in many cases. Kiernan et al. [18] introduced
a different approach in which each segment’s events of different types
are grouped based on their frequency of occurrence in the segment. A
summarization tool EventSummarizer [19] was further developed to
support event query. However, this method was initially designed to
summarize database log records, and only one event type is contained
in each user’s sequence. This greatly limits the applicability of this
approach to other application domains. More sophisticated summariza-
tion methods often employing clustering algorithms. A commonly used
tool for clustering event sequence data of variable length is Hidden
Markov Models (HMM). However, both standard HMM-based mod-
els [22, 25, 31] and mixture models of HMM [3, 4] have the drawback
that each event sequence can only be assigned to one cluster. Yet, in
real-world data, sequences may evolve over time and cluster in different
ways at different stages. Moreover, the results of these model-based
methods are so highly summarized that they do not effectively support
user-driven exploratory analysis. More specifically, users are unable to
drill down to the detailed event-level features and required to identify
the semantic meaning of an analysis result. This leads to great difficulty
in result validation and evaluation. In our work, therefore, we develop
a tensor-based summarization method which provides time-based clus-
tering, as well as the ability to retrieve detailed event-level features that
support user-driven exploratory analysis and interpretation.

Stage Analysis. A variety of methods have been proposed to de-
tect underlying stages (i.e., states) within a large collection of event
sequence data. Such stage analysis methods have great potential value
in extracting higher-level representations of event sequence progression.
For example, considering medical event data where stages might repre-
sent disease states and their evolution over time. This stage information
can potentially help doctors with more accurate and early diagnosis,
treatment planning, and risk management. However, traditional staging
in methods [9, 15, 30, 32, 33] largely rely on subjective assessments,
resulting in great imprecision. Recent efforts have tried to address this
by modeling disease progression using machine learning and statistical
techniques based on observed medical records. For example, Fonteijn

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

et al. [10] applied probabilistic classification to familial Alzheimers
disease and Huntingtons disease. Jackson et al. [16] developed a multi-
stage Hidden Markov Model to analyze aneurysm screening. Cohen et
al. [7] performed hierarchical clustering using minute-by-minute physi-
ological, clinical and treatment variables to identify patient states. Zhou
et al. [39] proposed a fused group lasso formulation with given biomark-
ers. In research most relevant to our work, Yang et al. [36] modeled
patient records as time sequences and subsequences with classification
labels, then utilized EM algorithm to soft assign each subsequence to
stages. Although these methods succeed in segmenting event sequences
into several stages, they fail to reveal the diversity of subsequence event
features within the same stage. This makes assessment and interpreta-
tion of the results very difficult if not impossible. The method proposed
in our work offers a more scalable and interpretable result. Our method
combine both summarization of sequences with detailed explanatory
information about the composition and variability of detected stages.

2.2 Event Sequence Visualization

A wide variety of methods have been designed to visualize temporal
data. While many of these techniques focus on time series data [1],
the area most relevant to our work is event sequence data visualization.
The focus of these methods is on visual summarization of event data,
often in ways that scale effectively for datasets with many sequences
and with large numbers of event types. These methods can be broadly
categorized into two types: (1) flow-based visualizations and (2) the
matrix-based visualizations.

Flow-based Approaches. A number of efforts have focused on vi-
sualizing temporal event sequence data using basic timeline metaphors.
For example, Lifelines [29], CloudLines [21], and other timeline-based
designs [2, 8, 17] simply displayed the original sequence data along a
common time axis. Although these methods can provide users with
detailed event path of individuals, aggregated analysis of sequence
groups such as pattern discovery is difficult to carry out. To overcome
this limitation, flow-based techniques similar to Sankey Diagrams have
been adopted along with aggregation methods in visualizations such
as LifeFlow [35], Outflow [34] and EventFlow [23]. These techniques
successfully aggregated large numbers of event sequences, but cannot
effectively handle datasets with large numbers of event types and/or
long sequences. Decisionflow [12] supported the analysis of event
sequences containing a very large amount of event types via rich inter-
actions. It has proven to be efficient in a variety of application scenarios
including medical event sequence exploration. However, like the other
flow-based methods, it still captures patterns only based on the oc-
currence of specific individual events, and fails to summarize latent
patterns or stages within the data, making it hard to identify certain
types of patterns [11].

Matrix-based Approaches. As an alternative to flow-based meth-
ods, a number of visualizations have adopted matrix-based tech-
niques. These visualizations utilize matrix-based icons to provide
visual links and comparisons between multiple events. For example,
MatrixFlow [27] used adjacency matrices to display the co-occurring
clinical events within a period of time. User-adjustable time param-
eters provide limited control over the temporal granularity of the vi-
sualization, which allow doctors to observe the temporal evolution of
symptoms. However, this technique does not reveal latent states or
their transitions as symptoms progress. MatrixWave [38] augmented
traditional Sankey Diagrams with adjacency matrices to depict visual
links between nodes in neighboring layers, and matrices of different
layers through a sophisticated layout method. Grids within the matrices
were also adopted in various ways to represent proportions of cohort
transition. Egolines [37], which most directly inspired our visual de-
sign, used a combination of aggregated flow-based and matrix-based
methods, along with a subway metaphor to present temporal patterns in
dynamic ego-networks. Although our work has a similar visual design,
our method are different from Egolines in two critical aspects. First,
our work aims to visualize a fundamentally different type of data. We
focus on event sequence data, while Egolines is designed for egocentric
networks in which the focus is on central actor and all patterns surround
it. Second, the temporal threads in Egolines all extend horizontally

Fig. 2. EventThread system overview and data processing pipeline.

along the full extend of the time axis. In contrast, our approach by
necessity must handle vertical structures which represent latent stage
categories. This requires a more sophisticated visual layout.

3 SYSTEM OVERVIEW

Our system is motivated by the real world analysis requirements from
the health-care domain. Based on discussions with experts and ongoing
collaborative research with experts in the field of medical data analysis,
a variety of design requirements were identified. These requirements,
as well as preliminary designs created to meet these requirements,
were discussed regularly over a four-month period resulting in iterative
improvements to the final design. Based on these interactions and
discussions, as well as a review of related work as summarized above,
a list of the most critical requirements (R1-R4) that guide the design of
our solution is as follows:
R1 Dealing with noisy data. Arrange events of high heterogeneity

and sequences of variable length to reveal the exact order of event
occurrence before data analysis.

R2 Summarizing data via cluster analysis. Group similar event
sequences (i.e.,sequences with similar events occurring in similar
order) into summarized views of latent patterns. Similar threads
should be further grouped at each stage to derive higher-level
latent patterns to illustrate meaningful temporal structures.

R3 Interpreting analysis results in context. Illustrate the analysis
results (i.e., the threads and higher-level structures) in the context
of detailed low-level event data to facilitate result interpretation.

R4 Keep humans in the analysis loop. Due to a lack of ground
truth, it is important to help users make adjustments and explore
the impact of different clustering choices during the analysis.

Based on these requirements, we have designed the EventThread
system to summarize event sequence data into a meaningful form. The
system, as shown in Fig 2, consists of three major modules: (1) the pre-
possessing module, (2) the analysis module, and (3) the visualization
module. The prepossessing module transforms the heterogeneous raw
event sequence data into a uniform format (i.e, a three way data tensor
capturing the multi-way structure of “Instance-Time-Event”) to meet
R1. The analysis derives latent threads by clustering the raw event se-
quences based on tensor analysis which also produces the latent context
information that is used for detecting higher-level structures, which
we call latent stage categories. This supports R2. The visualization
module represents the analysis results using multiple coordinated views
which show the analysis results within a multifaceted context to support
R3. Interactions with the visualizations are designed to let users easily
explore the data and adjust the analysis parameters, supporting R4.

4 EVENT SEQUENCE SUMMARIZATION

In this section, we first introduce the data model and preprocessing
methods designed to uniformly represent the heterogeneous event se-
quence data. We then describe a tensor-based pattern analysis technique
developed to summarize the event sequence data.

4.1 Data Model and Transformation
An event sequence associated to an entity is an ordered series of events
which occurred over a period of time. Here, the entity is an object
around which the sequence is produced or generated. For example, in
electronic health records, the entity represents a patient around which
the events such as diagnosis and labs are made; in the car service

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 3. Data transformation and analysis pipeline: (a) data filtering, (b) sequence alignment, (c) event folding, (d) data modeling, (e) tensor
decomposition, and (f) latent threads extraction.

dataset, the entity is a car around which the services such as waxing and
repairing are made. We transform collections of heterogeneous event
sequence data (with different lengths, event types, and event orders) into
a tensor-based data model via four major steps, as illustrated in Fig. 3(a
- d). In particular, we first filter events in the sequences to reduce
data noise. Then, we align the sequences based on event occurrence
order. Third, the aligned event sequences are segmented into stages for
summarization. Finally, the stages are transformed into a tensor.

Data Filtering. Real world event sequence data is often very noisy,
containing large numbers of event types of which many occur sparsely
and with limited frequency. To capture the primary sequential patterns
within this raw set of event sequence data, it is important to minimize
the data noise and only select the events that best represent a sequence
to capture its innate characteristics. To this end, we employ Term
Frequency - Inverse Document Frequency (TF-IDF) [6], a technique
used frequently in text mining, to measure the importance of individual
events. In text mining, the TF-IDF score of a word in a document
reflects the word’s importance in terms of clearly separating the doc-
ument from others in the corpus. Specifically, a word having a high
TF-IDF score in a document indicates it has high frequencies in the
focal document when compared to the overall corpus, and is therefore
representative of the document. An event sequence can be characterized
by characteristic events in a similar way. Here, an event sequence in
a dataset is analogous to a document in a collection. Thus, an event
within an event sequence corresponds to a word in a document. Based
on this conceptual mapping, we are able to use TF-IDF to estimate
the importance of each event. This estimate is then used to determine
which events best differentiate the sequence from others. In our imple-
mentation, n-gram (n = 1,2) is used in the calculation, and histogram is
used for showing the distribution, based on which a set of events with
significantly low TF-IDF scores are treated as noise and removed.

Sequence Alignment. Event sequence data captures a series of
events and the times that they occur over a period of time. Often,
only the relative time and the order of the sequence instead of the
specific occurrence time is meaningful in terms of capturing the primary
sequential patterns. For example, it is the order and duration of different
interventions which matters when treating a disease, rather than the
specific dates on which the interventions are performed. Therefore, we
shift the event sequences and align them along a common origin time
axis as shown in Fig. 3(b).

Stage Folding. We further segment the aligned event sequences into
multiple stages, within which the events are folded together to provide a
higher-level summarization. This sequence of stages is shorter in length
than the original sequence, which is particularly useful for dealing with
large-scale event sequence data collected over long periods of time. In
our implementation, the sequences are segmented and the events are
folded based on either fixed time intervals (e.g., a year, a month or
a day) which can be selected depending on typical event occurrence
frequency or the number of major event that has occurred (e.g., the
course of treatment, the round of car maintenance).

Data Modeling. After the above prepossessing steps, we capture
the key features of the transformed event sequence data within a tensor-
based data model. A tensor, denoted as X , is a multidimensional
array which extends the concepts of scalars (denoted as x), vectors
(denoted as x), and matrices (denoted as X) to higher dimensions. We

refer to a tensor with n-dimensions as an n-way tensor, where the
dimensionality is determined by the number of elements contained
within the tensor. For example, the three-way tensor X ∈ RN1×N2×N3

+
has three dimensions, corresponding to N1, N2, and N3. The notation R+
indicates that all the elements of X contain non-negative values, which
reflects that the values correspond to numbers of observed instances.

With the above definitions, the processed event sequence data can be
represented by a 3-way tensor X ∈ RM×T×N

+ (as shown in Fig. 3(d))
where M, T , N respectively indicate the number of events, stages, and
entities. In this way, Xi jk indicates the i-th event to have occurred in
the j-stage for the k-th entity.

4.2 Summarization Algorithm

We decompose the tensor of an event sequence dataset, X , to de-
rive latent sequential patterns, namely threads (Fig. 3(f)). Intuitively,
each thread represents a summarized view of a cluster of similar event
sequences. The event sequence clusters are derived through the decom-
position process with the aim of best representing the variation within
the dataset.

The tensor decomposition process (Fig. 3(e)) factorizes the tensor
X into the product of multiple components: a core tensor, and a set
of factor matrices (one for each dimension). We seek to minimize the
error between X and the product of these components. Formally, the
decomposition can be described as an optimization problem as follows:

min ||X − [[λ ;A,B,C]]||2

Subject to: BT B = I,A,B,C ∈ R{N,T,M}×K
+

where X ∈ RN×T×M
+ is the aforementioned three-way tensor that mod-

els a raw event sequence dataset. [[·]] denotes the CP tensor decom-
position algorithm [13], which produces factor matrices A, B, and C
in shapes of N×K, T ×K, and M×K, with K as an input parameter
indicating the number of latent threads. A, B, and C respectively rep-
resent the distributions of the threads over events, stages, and entities.
In particular, Btk indicates the likelihood of the k-th thread occurred
at stage t; Aik and C jk indicate the relevance between the k-th thread
and the i-th events and j-th entities, respectively. λ ∈ RK×K×K

+ is the
core tensor whose diagonal elements indicate the importance of the
corresponding thread. Constraint BT B = I ensures the orthogonality of
the threads, so that their meanings can be easily interpreted.

Intuitively speaking, this analysis process can be viewed as some-
what analogous to topic modeling in text analysis. Just as topic analysis
derives latent topics from a document collection, the above analysis
derives latent threads from a collection of event sequences. In contrast
to topic modeling, however, where a topic can be interpreted as a set of
keywords, the above tensor-based approach takes a multi-way structure
into consideration. This allows for a much richer interpretation of the
latent threads three different aspects: stages, events, and entities.

5 VISUALIZATION

This section presents a set of design tasks that guide our visualization
design, and the specific visualizations created to support these tasks.

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 4. The EventThread system contains six interactively coordinated views, including (1) a threads view, (2) an event flow view, (3) an entity list
view, (4) an event list view, (5) a thread list view and (6) a global overview. The clustering level of threads can be adjusted through (a) the cluster
slider. Users can choose to display and hide stage phases via (b) the stage slider, and (c) domain-specific event types. Entity proportions of latent
stage categories and threads can be revealed by (d) adding backgrounds. Event description can be obtained via (g) informative tooltips. Other useful
techniques for analysis are also available, including (e) zooming in on the timeline and (f) brushing components across specific stages.

5.1 Design Tasks
The design of visualizations to represent the above analysis results have
been guided by a set of required design tasks. These tasks, in turn, are
based on the requirements outlined in R1-R4. Generally, a desired visu-
alization tool should support a simultaneous illustration and exploration
of the overall evolution of the threads, as well as information to support
interpretation of corresponding events and entities. We formalize these
goals through the following design tasks:
T1 Show summarized sequential patterns in context. The visu-

alization should be designed to clearly reveal the summarized
sequential patterns (i.e., the latent threads) within the context of
corresponding stages, events and entities to provide interpretable
overviews of the patterns.

T2 Differentiate between different thread evolution patterns.
The visualization should be able to reveal the details about how
threads evolve from stage to stage. Groups of threads may relate
to similar sets of events and entities at various stages, so the vi-
sualization should be able to group similar threads and separate
threads that are more distinct. Moreover, these groups can evolve
from one stage to another.

T3 Promote pattern inspection and comparison. The visualiza-
tion design should support rich interactions and coordinated views
to help users inspect and compare the visualized threads.

T4 Provide easy access to raw event data. While high-level sum-
marization of temporal patterns is essential, the visualization
should also be able to communicate the raw event sequences cor-
responding to those patterns. This is critical for both interpretation
and validation of the discovered patterns.

5.2 User Interface
Guided by the above tasks, we design the user interface of Event-
Thread system as primary thread view (Fig. 4(1)) surrounded by a set
of coordinated side views which provide contextual information from
different perspectives (T1). In particular, when a selection is made in
the thread view, the context views are updated to show details about the
selected threads or thread stages. More specifically, the event flow view
(Fig. 4(2)) shows an aggregate representation of raw event sequence
data for the selection; the entity list (Fig. 4(3)) shows the corresponding
entities (captured in factor matrix C) and their profiles; the event list

(Fig. 4(4)) illustrates the most frequently occurring events within the
selection; and the thread list view (Fig. 4(5)) shows the event type
distributions within the selected threads for comparison via treemaps
(T2). Complimenting these selection-driven contextual views, an over-
all overview is also provided (Fig. 4(6)) to illustrate the overall event
distribution cross the full set of the threads in factor matrix A. The
color-coding palettes are consistent across different views, with each
color representing a specific category of event types.

5.3 Thread View
In this subsection, we introduce the design of the thread view and the
corresponding layout algorithms.

5.3.1 Visualization Design and Encoding
The thread view, as shown in Fig. 5, is designed to visually summarize
the key concepts (threads, stages, events, and entities) derived from
either the raw data or the tensor analysis results. This is done within one
integrated visual representation which reveals the evolution patterns of
event sequences over different stages. The design details for each part
of the thread view are as follows.

Threads. We visualize the threads derived by tensor analysis as
segmented linear stripes, following a line map metaphor. The threads
link the key concepts of stage, events, and entities together. Each
thread (Fig. 5(a)) is equally divided into several segments based on
the number of stages recorded in the tensor (Fig. 5(b)). The color
opacity of the thread in each stage represents the thread’s likelihood
of occurrence, which is given by the corresponding column vector of
factor matrix B. When the likelihood is zero for a given stage, the thread
will be visualized as a dashed-line as shown in Fig. 5(e), indicating
the temporary absence of any corresponding events at that time for
that thread. This visual thread design aims to providing a concise
overview of the summarized sequential patterns and their probabilities
of occurrence at different stages (T1).

Stages. In our design, a stage represents a fixed, temporal unit that is
recorded in the tensor (see Section 4.1) and visually represented as a line
segment in a thread (Fig. 5(b)). The segments within different threads
at the same stage can be further grouped into latent stage categories
based on similarities of the events that are likely to occur in the stage.
A sophisticated layout algorithm balancing between thread similarity
and line crossing is developed and applied to place the threads in their

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 5. The thread visualization design shows information for threads, stages, events and entities as derived from the raw data through tensor
analysis. Threads are shown as lines (a), and are divided into several stages (b) with each segment containing nodes (c) indicating events with high
likelihood of occurrence. Nodes are labeled with the event type with the highest likelihood (d). Threads having zero occurrence likelihood at a certain
stage are encoded with dashed-lines (e). Threads in each stage are further clustered into latent stage categories (f), with labels showing the names
of the most likely events to be found inside the threads (g). The entire view is under-laid with a gray background whose height (h) indicates the
number of entities involved in a latent category or thread. A process bar (i) is used to encode the proportion of entities in a particular thread with
respect to the cluster. Interactions such as selection and coordinated highlighting of events (j) are also employed.

positions. The layout algorithm is discussed in Section 5.3.2. This
design helps users identify latent stage categories within each stage, as
well as distinguish between different evolution patterns as evidenced
by the merging and diverging of categories. (T2).

Events. The set of events occurring within a thread at a given
stage is the most important contextual information available to help
interpret the meaning of a thread. To make this information visible,
event occurrence probabilities are visually encoded as part of the thread
representation in each stage (T1). As mentioned in 4.2, each event i
has a likelihood of occurrence for the stage t in the thread k, which is
given by (AikBtk). As shown in Fig. 5(c), circular nodes within each
thread are used to represent the events with the highest occurrence
likelihood in a given stage, with the circle size indicating the likelihood
and the circle color corresponding to the event type. For each latent
stage category (i.e., each cluster of thread stages), the displayed events
are selected by considering their overall likelihood of occurrence across
all threads in the category. Events for each stage category are vertically
aligned to allow comparison, with a label at the top for identification
(Fig. 5(g)). Events are sorted from left to right beginning with the
highest likelihood of occurrence. The most likely event is used as the
segment’s label (Fig. 5(d)) for emphasis. The label is left blank if the
segment contains multiple likely events.This visual design, together
with interactive highlighting (described in Section 5.5), helps users
track events across the threads.

Entities. Entities are visualized in our design as light grey back-
grounds under-laid beneath the threads (Fig. 5(h)). The height of grey
backgrounds, designed to reveal the volume of entities flowing along
each branch in the visualization, correspond to the number of entities
associated with the combined set of threads in a given category (T1).
This number is given by (CikBtk) with Cik indicates the relevance be-
tween the i-th entity and the k-th thread and Btk indicates the likelihood
of the k-th thread occurred at the t-th stage. The backgrounds are op-
tional, and when enabled the thread layout adapts thread positions to
account for the variations in height across thread categories (Fig. 5). To
communicate the proportion of entities involved in each thread within
a stage category, we use the length of a small bar (Fig. 5(i)) to indicate
the percentage of entities in the category which come from a particular
thread.

5.3.2 Layout Algorithm
To layout the threads, we first fix the x-positions of the stages by
equally dividing the width of the display. After that, a novel layout
algorithm groups threads together based on their event similarities at
each stage, while minimizing during layout the crossing of the thread
stripes to reduce visual clutter. These factors determine the y-positions
of each thread at each stage. These layout constraints are formulated

Fig. 6. Users can interactively adjust the clustering level to group threads
into different latent stage categories.

as an optimization problem, in which the following layout energy is
minimized:

T

∑
t=0

(α ∑
i< j

wi j(t)
∥∥yi(t)− y j(t)

∥∥2
+(1−α)∑

i
‖yi(t)− yi(t−1)‖2)

where yi(t) indicates the vertical position of a thread at the stage t and
wi j(t) indicates the event similarity between thread i and j at a given
stage t by using inverse quadratic Euclidean Distance,

wi j(t) =
1

d(vi(t),vj(t))2

where vi(t) is the feature vector of thread with m events i in stage t
which is of the form vi(t)=(A1iBti,A2iBti,...,AmiBti). Intuitively, the
first term minimizes the Euclidean distances between pairs of threads
and will group threads with larger event similarity (i.e., have a larger
wi j(t) value, which can be solved based on spectrum analysis [20]).
The second term reduces thread crossings by minimizing the differences
between the vertical positions for the same thread at neighboring stages.
These two terms are balanced by a parameter α ∈ [0,1]. The overall
optimization problem is solved using an iteratively procedure in which
thread segments in a pair of succeeding stages (i.e., stages t and t +1,
or t and t− 1) are laid out in each iteration, stopping only when the
energy term has converged.

Based on the y-positions calculated above, the threads are vertically
placed in rows on the display as shown in Fig. 6(a). Users can further
cluster the thread segments within the same stage into latent stage
categories by interactively adjusting a distance threshold t via the slider
shown Fig. 4(a). The neighboring threads whose vertical distances at
a given stage are smaller than the threshold will be clustered together
within the corresponding stage as shown in Fig. 6(b).

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 7. The visual encoding of overview panel. (a) Each generated
thread is described by its major events with corresponding occurrence
probabilities and classified by event type. (b) Classified events are
depicted by a small thread icon, which are then (c) packed together to
generate the overview. (d) The final overview is created by splitting and
re-grouping the thread icons by event type.

5.4 Context Views
The interface includes four contextual views including an overview and
thread list view, an entity list view, an event list view, and an event
flow view. The thread list and overview allow for comparisons of the
events associated with each thread. The entity and event list views
are used to examine raw, low-level data to aid in interpretation. The
event flow view shows an aggregate representation of the raw event
sequence data that scales to large number of event sequences. These
views are coordinated with selections in the thread view, facilitating
pattern inspection, comparison, and interpretation (T3,T4).

Overview and Thread List View. We employ the visual design of
DICON [5] in the overview panel (as shown in Fig. 4(6)) to simplify
the comparison of event occurrence probabilities across threads (T3).
Each thread is described by a set of events and associated probabilities,
which is given by the corresponding column vector in factor matrix
A. We select the top 10 types of events which are most relevant to
the thread (as shown in Fig. 7(a)), and normalize the range of proba-
bility to the interval [0,1] before gathering them into a treemap-like
representation (as shown in Fig. 7(b)). The thread icons are further
packed together as shown in Fig. 7(d), with the color opacity encoding
the threads occurrence probability given by summing the values of the
corresponding column vector in factor matrix A.

Furthermore, we display the tree-map icon of each individual thread
(as shown in Fig. 7(b)) in thread list view (as shown in Fig. 4(5)). This
allows users to compare threads across various stages. When users
select thread segments in the thread view, the most relevant events are
ranked by summing up the relevance degree of each event i in stage t,
which is given by (AikBtk). A full list of ranked events is also provided
beside the icon of each thread.

Entity List. The entity list view provides users with easy access to
entity profiles and raw event sequences (T4). As illustrated in Fig. 4(3),
each list item contains the entity id and other basic information. An
intuitive node-link representation of the raw event sequence data for
the entity is also displayed, with node color indicating event types, and
event name at the top of each node.

Event List. The event list (T4) provides even more details about the
underlying event data behind the selected thread stages in the thread
view. Events can be ranked by either the number of entities in which
they appear, or the summed probabilities across the selected threads. A
horizontal bar visually encodes the value to enable quick comparisons.
An event search is also provided, allowing users to direct query for a
specific event.

Event Flow. An EventFlow-based design [23] is used to provide
an aggregate representation of the raw event sequences involved in the
selected thread segments. As shown in Fig. 4(2), each horizontal line
depicts one entity’s event sequence during the selected stages. The
colors of the line segments in this view are used to encode event types,
and the length is proportional to the time span of the event sequence.
In addition, we mark the beginning and the end of event type regions
with a dark, vertical bar to help users identify event type transitions.

5.5 Interaction
To allow users to explore the data from different perspectives, we aug-
mented the visualizations within EventThread with several interactive
capabilities.

Query and Filter. Users can explore different data sets through the
query box, and apply filters to focus on specific event types by clicking
on the event type buttons as shown in Fig. 4(c). The Stage slider (as
shown in Fig. 4(b)) can be used to focus an analysis on select stages of
interest.

Highlights and Tooltips. When the mouse hovers over a thread
node, the corresponding column in the latent category is also visually
emphasized (as shown in Fig. 5(f)) to help users identify the event
name. At the same time, all other occurrences of same event (the event
associated with the hovered node) will also be highlighted regardless of
where they appear. This helps users uncover events that repeat across
different sections of the thread view (as shown in Fig. 5(j)). Similarly,
when users hover a thread or the thread label in one stage, the entire
thread across all stages will be highlighted (as shown by second thread
from the top in Fig. 5).

Users can also choose to overlay grids on the threads to help separate
nodes to during visual scanning and inspection (as shown in Fig. 9).
Finally, hovering over any visual element in a visualization triggers
the display of tooltips with detailed descriptive information about the
underlying events (as shown in Fig. 4(g)). This feature is essential for
helping users decode complex datasets which contain many thousands
of coded event types (T4).

Brush and Zoom. Users can brush several threads segments in
the thread view (as shown in Fig. 4(f)), and in response the coordi-
nated contextual view panels will be updated to display corresponding
information. The information will be based on the entities and raw
event sequence data associated with the selected segments. Users can
also zoom in on the thread view by selecting a range of stages in the
interactive timeline (as shown in Fig. 4(e)).

Adjust Clustering Threshold Level. The amount of clustering ap-
plied to the threads at each stage can be adjusted through cluster slider
on the top of the thread view (as shown in Fig. 4(a)). Users would typi-
cally adjust the slider to find the most meaningful category groupings
among the threads, or dynamically move the slider to understand the
sensitivity of the thread groupings.

6 EVALUATION

The EventThread design provides a unique approach to event sequence
summarization, using tensor analysis to help extract latent high-level
structures. We evaluate this approach in multiple ways. First, we report
results from three usage scenarios where EventThread was applied to
three real-world datasets in three distinct application domains: a cohort
of electronic medical records, a corpus of car maintenance records, and
a dataset recording progress of professor’s acedemic behaviors. We
then report qualitative feedback on our system gathered from an expert
user in the medical domain.

6.1 Usage Scenarios
In this section, we report the results from three real usage scenarios
to demonstrate the ways in which EventThread can help users find
patterns in real-world event sequence datasets. Each scenario is per-
formed in a distinct domain using datasets that have very different
properties (numbers of events, types of events, length of sequences).
Yet in all three scenarios, EventThread was able to help users identify
domain-relevant insights. In each scenario, we manually selected the
key parameters such as the number of threads and stages in the data
preprocessing phase to best reveal innate sequential event patterns of
the underlying data.

6.1.1 Usage Scenario I: Analysis of COPD Cohort
In our first usage scenario, we used EventThread to analyze event
sequence data representing the medical records for a cohort of 5,804
chronic obstructive pulmonary disease (COPD) patients. The dataset
included timestamped events representing diagnoses, procedures, and
encounters (i.e., hospital admission and discharge events). The data

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 8. The thread view of EventThread being used to explore medical event data for a cohort of patients suffering from chronic obstructive pulmonary
disease (COPD). There are 6 threads generated, which are divided into 8 stages. A branch with several encounter events (hospital admissions and
discharges) takes one thread away from the first latent stage category, indicating a group of patients that develop a high risk of increased hospital
admissions later in the disease progression.

included seven years of longitudinal medical data, captured between
2008 and 2014. Each patient’s individual timeline, however, varied in
length and time span within those seven years.1

Visualization and results. We applied EventThread to the medical
data described above, after first aligning all patients’ event data to a
common t = 0 time period determined by the patient’s first hospitaliza-
tion. We then processed the data to create 6 threads based on annual
stages,with each thread represents a typical clinical pathway of a certain
cohort. Even without any clustering across threads, the data exhibited a
few interesting trends. First, the number of event sequences for each
thread reduced in volume over time, reflecting patients either leaving
the health care system or succumbing to their conditions. In addition, it
was clear that some threads captured relatively rare progressions while
others represented the majority of the cohort.

Adjusting the clustering to group similar threads, we explored the
order in which the threads merged with each other at different stages.
Eventually, settling on a clustering level of 0.16, we discovered a
single main cluster containing 5 threads with a single outlier thread
capturing more unusual progressions. Most interestingly, the main
cluster was grouped together only for stage two through four, before a
branch appeared taking one cluster away from the group at stage 5 and
continuing (Fig. 8(a)).

The stage 5 branch contained several encounter events (hospital
admit and discharge), suggesting that this was a group at high risk of
increased hospital admissions. As described in our Expert Interview,
this finding was among the most clinically interesting found in our
analysis of the medical data, and has potential for real-world impact.

6.1.2 Usage Scenario II: Analysis of Vehicle Maintenance

In our second usage scenario, we applied EventThread to a corpus
of vehicle maintenance records. This dataset contained nearly 5,000
maintenance records from 1,112 cars. Each record consisted of a car’s
id, a maintenance type, a specific maintenance item, and a description
of the item. There was a total of six maintenance types which can be
found in the legend of Fig. 1.

Visualization and results. Different from COPD data, we aligned
the sequences of vehicle dataset by the number of maintenance that
was performed, considering that different people may have diverse
usage habits. After data processing, we generated seven latent threads
representing various car owner’s maintenance habits and each stage
representing another round of maintenance on a car.

We explored the latent stage categories, and finally settled on a
clustering level of 0.2, where the initial stage was generally divided
into three latent categories. This included one major category with five

1The discretization process that divides event data into stages is done by
calendar year in our prototype. Because event dates in the medical dataset
are perturbed by a random offset for each patient to preserve privacy, the time
window may not align with the change in calendar year. This produces a time
range of 8 calendar years, as evidenced by the 8 stages in Fig. 8.

threads characterized by beautification events, and two smaller threads
exhibiting large numbers of repair and parts replacement events. As
illustrated in Fig. 1, the data revealed several interesting patterns. First,
all threads tended to have more repairs and parts replacements in later
stages. Second, a branch that split from the second category in stage
2 contained several diagnostics events (e.g., performing diagnostic
tests). The vehicles in this branch were generally in better condition,
with lower levels of repair and parts replacement events in later stages
compared to other threads. This shows, perhaps, the benefit of increased
diagnostic testing.

Furthermore, we found a very large difference between thread 1 and
7. These two groups of cars used different types of engine oil. In thread
1 semi synthetic oil was a regularly occurring pattern, while for thread
7 it was full synthetic oil that was found with high probability. From
Fig. 1, we can see thread 7 merged with the third category, a group of
cars using premium synthetic oil, in stage 6, and threads in this latent
category gradually integrated to one pattern (as shown in Fig. 1(b)). To
thoroughly observe the different conditions between cars with distinct
engine oils in later stages, we expanded the event features of the last
stage, and an obvious contrast is revealed. Cars using full synthetic
oil and premium synthetic oil (as shown in Fig. 1(b)) showed much
less risk of car repair and parts replacements compared to cars using
semi-synthetic oil (as shown in Fig. 1(a)). This finding indicates that
full synthetic oil and premium synthetic oil are a better choice when
selecting engine oils.

6.1.3 Usage Scenario III: Analysis of Academic Behaviors

For our third usage scenario, we analyzed a dataset with career progres-
sion events for group of professors. The dataset contained sequences of
timestamped milestone events in 10 different categories such as earning
new degrees, being assigned new job titles, or publishing (e.g., books,
journal articles, and conference papers). The dataset included records
of 40 individuals spanning 23 years. We manually classified the events
into 3 high-level types including training, publishing, and promotion.

Visualization and results. We aligned all sequences to the first
occurring event, then applied EventThread to create 4 threads based
on annual stages. Each thread stands for a career path of a group of
scholars. After adjusting the clustering level, interesting patterns were
revealed. We captured the result from stage 8 to stage 15 in Fig. 9.
As shown in the figure, stage 8 was generally categorized into three
groups, indicating people with different titles: Associate Professors
were representative of thread 1, Professors were represented in thread
2, and Assistant Professor were most represented in threads 3 and 4.
We found that in thread 2, full professors were more likely to have
the co-occurring event of publishing conference papers. The assistant
professor cluster, however, contained a group publishing newspaper
articles and conference papers (thread 3), and another publishing in
journals (thread 4). The difference between these two threads became
more significant at stage 12, as evidenced by the split which occurs
in Fig. 9(b). As for thread 1, all publishing events occurred with high

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

Fig. 9. An analysis result of users’ academic behaviors from stage 8 to stage 15. Threads are generally grouped by users with different academic
titles. The behavior patterns in each thread are significantly different. Similarities between threads are illustrated through branch merges and splits.

probabilities in various stages, and the thread merged with thread 2
at stage stage 15 (as shown in Fig. 9(a). This finding indicates an
increasing similarity between professors’ and associate professors’
behaviors as those associate professors gain seniority.

6.2 Expert Interview
To gather qualitative feedback about the system, we interviewed a
medical expert with domain knowledge of the COPD usage scenario
outlined above. We interviewed an Assistant Professor of Medicine at
the University of North Carolina School of Medicine. In addition to her
clinical training, the Medical Doctor also has a Masters in Healthcare
Administration giving her strong perspectives on a variety of medical
use cases ranging from population-based policies to point-of-care treat-
ment decisions. She also has experience with health informatics, and is
generally receptive to the potential of technology to address healthcare
challenges.

We interviewed the doctor for approximately 35 minutes. The in-
terview began with a brief 5 minute introduction of the EventThread,
including its visual and interaction design. The remaining 30 minutes
were spent visually exploring data and discussing the implications of
system’s analytical features.

The short introduction was sufficient for the doctor to understand the
main idea behind the system’s design, including the most significant
visual encoding used to represent the data. She asked periodic questions
throughout the interview session to clarify more detailed aspects of the
visual design, and was able to quickly apply the moderator’s answer to
derive new findings from the visualization. Interaction with the system
was primarily performed by the moderator in response to the doctor’s
verbal queries. This shows that the short introduction was sufficient to
bootstrap the doctor’s analysis, but that a more comprehensive tutorial
would be required for a user to be independently capable of using the
system to its full potential.

The most common refrain from the doctor was “Oh, interesting!”
Many times this was followed by “I wouldn’t have thought of that” or
something similar. For example, she was most interested in the finding
outlined in our medical use case: the group of COPD patients which
in later stages broke away from the main group and experienced much
higher rates of hospitalization. “The’s the only path that has some blue”
she pointed out quickly, latching on to the color coding distinguishing
between types of events.

Moreover, the doctor felt that the finding was exactly the sort of
information that health care systems would be interesting in discovering.
“Everyone’s trying to build predictive models for risk reduction and
value-based care,” she began. “I could maybe see something like this
being used to cluster high-risk patients... we don’t really know a lot
about how they cluster out” and “if we knew, that might be helpful.”
Asking to have more time than our interview allowed, she stated, “It
would be nice to look around [more].”

The doctor also spent a significant amount of time asking for clarifi-
cation about exactly what events we were using. She stated that this
was due, in part, to inconsistencies in coding between doctors and the
desire to know what doctors meant when using a specific code. This
supports the approach taken in EventThread in which similar event
sequences are grouped together rather than requiring an exact sequence
match as often done in the past.

The doctor also talked about the benefits of the companion views.
“The individual view is interesting” because it provides “a look-back
at what happened to the individual patients” who are represented by
the main clustered overview. She also stated that “people would be
interested in [the treemap view] as well” because it gives a “quick, easy
way to see” what events are common.

Finally, the doctor also identified some aspects of the design that
were confusing. One especially challenging point of feedback was that
the reliance on codes (of which there are tens of thousands) is difficult
for interpretation. Clinicians do not have the codes memorized. Textual
descriptors are much more meaningful. However, these descriptions
can be quite long and are not directly suitable for use as labels within
a dense visualization. The doctor felt that our hover-activated tool-
tips were very useful, but wondered about better solutions. This is a
challenge to consider in future work. A second challenge identified by
the doctor is the presence of “uninteresting” medical events within the
visualization. There were times that she ignored events that she felt
were clinically irrelevant. The system currently allows users to turn on
or off categories of events. However, the interview showed that more
fine grained control would be useful.

7 CONCLUSION AND DISCUSSIONS

We have presented EventThread, a technique designed to support vi-
sual summarization and latent stage analysis of large scale and high-
dimensional event sequence data. Based on event sequence clustering
of high-level structures via tensor decomposition, EventThread incor-
porates a robust layout algorithm to promote latent thread comparisons
as well as dynamic exploration of latent stage categories. We proposed
a novel visualization design of threads and multiple coordinated views
with rich interactions to comprehensively assist users with data ex-
ploration and analysis. We evaluated our system via real-world event
sequence datasets, and conducted an interview with an expert from the
health-care domain. These results demonstrate that our design can be
used to identify semantically interesting patterns in highly summarized
event sequence data and facilitate latent stage analysis. However, there
are several key limitations: (1) stages are created with a static, constant
duration which can be improved to fit many real-world scenarios in
which stages can differ in length as entities may have different pro-
gression rates [36]. Second, the number of desired latent sequential
patterns is currently manually defined. We intend to explore adaptive
tensor decomposition algorithms to help automatically identify optimal
values for this parameter for a given dataset. Moreover, we also plan to
conduct formal experimental user studies to gain more valuable insights
regarding the usability of the system.

ACKNOWLEDGMENTS

We would like to thank all the reviewers for their constructive com-
ments. We also would like to thank all the users and domain experts
who participated our user study. This work is a part of the research
supported from NSFC Grants 61602306, STCSM 15JC1401700, the
National Grants for the Thousand Young Talents in China, and the
NSFC-Zhejiang Joint Fund for the Integration of Industrialization and
Information under Grant No. U1609220.

1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2745320, IEEE
Transactions on Visualization and Computer Graphics

REFERENCES

[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of
time-oriented data. Springer Science & Business Media, 2011.

[2] W. Aigner, S. Miksch, B. Thurnher, and S. Biffl. Planninglines: novel
glyphs for representing temporal uncertainties and their evaluation. In
Proceedings of International Conference on Information Visualisation, pp.
457–463. IEEE, 2005.

[3] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters
in motion time-series data. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–I.
IEEE, 2003.

[4] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Model-based
clustering and visualization of navigation patterns on a web site. Data
Mining and Knowledge Discovery, 7(4):399–424, 2003.

[5] N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis
of multidimensional clusters. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2581–2590, 2011.

[6] G. Chowdhury. Introduction to Modern Information Retrieval. Facet
publishing, 2010.

[7] M. J. Cohen, A. D. Grossman, D. Morabito, M. M. Knudson, A. J. Butte,
and G. T. Manley. Identification of complex metabolic states in criti-
cally injured patients using bioinformatic cluster analysis. Critical Care,
14(1):R10, 2010.

[8] S. B. Cousins and M. G. Kahn. The visual display of temporal information.
Artificial Intelligence in Medicine, 3(6):341–357, 1991.

[9] B. C. Dickerson, A. Bakkour, D. H. Salat, E. Feczko, J. Pacheco, D. N.
Greve, F. Grodstein, C. I. Wright, D. Blacker, H. D. Rosas, et al. The
cortical signature of alzheimer’s disease: regionally specific cortical thin-
ning relates to symptom severity in very mild to mild ad dementia and is
detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex,
19(3):497–510, 2009.

[10] H. M. Fonteijn, M. Modat, M. J. Clarkson, J. Barnes, M. Lehmann, N. Z.
Hobbs, R. I. Scahill, S. J. Tabrizi, S. Ourselin, N. C. Fox, et al. An
event-based model for disease progression and its application in familial
alzheimer’s disease and huntington’s disease. NeuroImage, 60(3):1880–
1889, 2012.

[11] D. Gotz. Soft patterns: moving beyond explicit sequential patterns during
visual analysis of longitudinal event datasets. In Proceedings of IEEE VIS
Workshop on Temporal and Sequential Event Analysis, 2016.

[12] D. Gotz and H. Stavropoulos. Decisionflow: visual analytics for high-
dimensional temporal event sequence data. IEEE transactions on Visual-
ization and Computer Graphics, 20(12):1783–1792, 2014.

[13] R. A. Harshman. Foundations of the parafac procedure: Models and
conditions for an” explanatory” multi-modal factor analysis. 1970.

[14] Z. Huang, X. Lu, H. Duan, and W. Fan. Summarizing clinical pathways
from event logs. Journal of Biomedical Informatics, 46(1):111–127, 2013.

[15] C. R. Jack, D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen, M. W.
Weiner, R. C. Petersen, and J. Q. Trojanowski. Hypothetical model of
dynamic biomarkers of the alzheimer’s pathological cascade. The Lancet
Neurology, 9(1):119–128, 2010.

[16] C. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, and E. Couto.
Multistate markov models for disease progression with classification er-
ror. Journal of the Royal Statistical Society: Series D (The Statistician),
52(2):193–209, 2003.

[17] G. M. Karam. Visualization using timelines. In Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp.
125–137. ACM, 1994.

[18] J. Kiernan and E. Terzi. Constructing comprehensive summaries of large
event sequences. ACM Transactions on Knowledge Discovery from Data,
3(4):21, 2009.

[19] J. Kiernan and E. Terzi. Eventsummarizer: a tool for summarizing large
event sequences. In Proceedings of International Conference on Extending
Database Technology: Advances in Database Technology, pp. 1136–1139.
ACM, 2009.

[20] Y. Koren and L. Carmel. Visualization of labeled data using linear trans-
formations. In InfoVis, 2003.

[21] M. Krstajic, E. Bertini, and D. Keim. Cloudlines: compact display of
event episodes in multiple time-series. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2432–2439, 2011.

[22] C. Li and G. Biswas. A bayesian approach to temporal data clustering
using hidden markov models. In ICML, pp. 543–550, 2000.

[23] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal

event sequence simplification. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2227–2236, 2013.

[24] T. Mori, A. Takada, Y. Iwamura, and T. Sato. Automatic human life
summarization system in sensory living space. In IEEE International
Conference on Systems, Man and Cybernetics, vol. 2, pp. 1583–1588.
IEEE, 2004.

[25] T. Oates, L. Firoiu, and P. R. Cohen. Using dynamic time warping to
bootstrap hmm-based clustering of time series. In Sequence Learning, pp.
35–52. Springer, 2000.

[26] N. Osato, M. Itoh, H. Konno, S. Kondo, K. Shibata, P. Carninci, T. Shiraki,
A. Shinagawa, T. Arakawa, S. Kikuchi, et al. A computer-based method
of selecting clones for a full-length cdna project: simultaneous collection
of negligibly redundant and variant cdnas. Genome Research, 12(7):1127–
1134, 2002.

[27] A. Perer and J. Sun. Matrixflow: temporal network visual analytics to
track symptom evolution during disease progression. In AMIA Annual
Symposium Proceedings, vol. 2012, p. 716. American Medical Informatics
Association, 2012.

[28] Q.-K. Pham, G. Raschia, N. Mouaddib, R. Saint-Paul, and B. Benatallah.
Time sequence summarization to scale up applications. In Proceedings
of ACM Conference on Information and Knowledge Management, pp.
1137–1146. ACM, 2009.

[29] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Lifelines:
visualizing personal histories. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 221–227. ACM, 1996.

[30] R. I. Scahill, J. M. Schott, J. M. Stevens, M. N. Rossor, and N. C. Fox.
Mapping the evolution of regional atrophy in alzheimer’s disease: unbi-
ased analysis of fluid-registered serial mri. Proceedings of the National
Academy of Sciences, 99(7):4703–4707, 2002.

[31] P. Smyth et al. Clustering sequences with hidden markov models. Ad-
vances in Neural Information Processing Systems, pp. 648–654, 1997.

[32] P. M. Thompson, K. M. Hayashi, G. De Zubicaray, A. L. Janke, S. E.
Rose, J. Semple, D. Herman, M. S. Hong, S. S. Dittmer, D. M. Doddrell,
et al. Dynamics of gray matter loss in alzheimer’s disease. Journal of
Neuroscience, 23(3):994–1005, 2003.

[33] P. M. Thompson, M. S. Mega, R. P. Woods, C. I. Zoumalan, C. J. Lind-
shield, R. E. Blanton, J. Moussai, C. J. Holmes, J. L. Cummings, and A. W.
Toga. Cortical change in alzheimer’s disease detected with a disease-
specific population-based brain atlas. Cerebral Cortex, 11(1):1–16, 2001.

[34] K. Wongsuphasawat and D. Gotz. Outflow: visualizing patient flow by
symptoms and outcome. In IEEE VisWeek Workshop on Visual Analytics in
Healthcare, Providence, Rhode Island, USA, pp. 25–28. American Medical
Informatics Association, 2011.

[35] K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang,
M. Taieb-Maimon, and B. Shneiderman. Lifeflow: visualizing an overview
of event sequences. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1747–1756. ACM, 2011.

[36] J. Yang, J. McAuley, J. Leskovec, P. LePendu, and N. Shah. Finding
progression stages in time-evolving event sequences. In Proceedings of
International Conference on World Wide Web, pp. 783–794. ACM, 2014.

[37] J. Zhao, M. Glueck, F. Chevalier, Y. Wu, and A. Khan. Egocentric analysis
of dynamic networks with egolines. In Proceedings of CHI Conference on
Human Factors in Computing Systems, pp. 5003–5014. ACM, 2016.

[38] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. Matrixwave:
visual comparison of event sequence data. In Proceedings of Annual ACM
Conference on Human Factors in Computing Systems, pp. 259–268. ACM,
2015.

[39] J. Zhou, J. Liu, V. A. Narayan, J. Ye, A. D. N. Initiative, et al. Modeling
disease progression via multi-task learning. NeuroImage, 78:233–248,
2013.

