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StreamExplorer: A Multi-Stage System for
Visually Exploring Events in Social Streams

Yingcai Wu, Zhutian Chen, Guodao Sun, Xiao Xie, Nan Cao, Shixia Liu, Weiwei Cui

Abstract—Analyzing social streams is important for many applications, such as crisis management. However, the considerable
diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be
overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC.
This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored
GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the
framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a
macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the
ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from
either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the
social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and
usefulness of StreamExplorer.

Index Terms—Social media visualization, visual analytics, social stream, streaming data, self-organizing map.
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1 INTRODUCTION

SOCIAL streams cover an extensive spectrum of ongoing
topics on events happening around the world [29], [47].

Hence, the timely analysis and tracking of social streams has
become increasingly important to various applications. By
monitoring their social streams, decision makers can main-
tain a high level of situational awareness and appropriately
react to major crises in a timely manner [35]. The abundant
user-generated information also brings new opportunities
for sociologists to conduct data-driven research [3]. There-
fore, effective approaches are required to fully support the
analysis and monitoring tasks of social streams.

Various visualization systems, such as Whisper [10] and
Visual Backchannel [17], have been developed to visualize
social streams. However, most systems are generally not
scalable for tracking and exploring large events with many
live topics. Various event detection techniques have been
used to alleviate the problem by extracting more impor-
tant topics in certain spatio-temporal ranges. Nevertheless,
methods based on topic modeling [12] or clustering [43] are
usually too computationally intensive to handle live streams
on budget PCs. Other methods based on term tracking [37]
can deal with streaming data efficiently but do not support
an in-depth, topic-based analysis. Hence, the process of
tracking and exploring large events with many live topics
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from social streams on budget PCs in a timely, manageable,
and comprehensible manner remains a challenging task.

To overcome the difficulty, the present study aims to
make three contributions as follows. Our first contribution
is a new framework that processes social streams efficiently
to support interactive visualization. The framework can
be deployed on a commodity computer and features two
elements: (1) a rapid online algorithm that continuously
detects important time periods (i.e., subevents), and (2) a
GPU-assisted Self-Organizing Map (SOM) method that can
be invoked on demand to efficiently extract topics of tweets
made on any subevent.

Our second contribution is the provision of a multi-level
visualization method that integrates a novel glyph-based
timeline visualization, a map visualization, and interactive
lenses to enable an intuitive, multi-faceted analysis of social
streams. The timeline visualization visually summarizes
important subevents at a macroscopic level, using a combi-
nation of glyph-based trend and tree visualizations. It does
not only reveal the dynamic changes of a social stream in
the context of its past evolution, but also organizes past
subevents in a hierarchical manner for easy review and nav-
igation of subevents. For further analysis at a mesoscopic
level, the map visualization shows a topic or geographic
map for any subevent selected from the timeline visualiza-
tion. Interactive lenses, such as word lens and network lens,
allow users to visually examine the map visualization for an
in-depth, multi-faceted analysis at a microscopic level.

The third contribution is a new multi-stage system that
is based on the proposed framework and visualization
techniques. The system enables end users to track, explore,
and gain insights into social streams at different levels. The
efficient framework and multi-level visualization make the
system scalable to the large and fast social streams as well
as manageable for end-users to use on budget PCs.
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2 RELATED WORKS

This section reviews a few research areas that are closely
related to our work of visual analysis of social streams.

2.1 Streaming Data Visualization
Temporal data visualization has been extensively stud-
ied [9], [18] and applied in various applications, such as
sport analysis [31] and social media analysis [34]. Streaming
data visualization is an important research area in temporal
data visualization - one that typically deals with continu-
ously updating, unbounded data sequences [25]. Different
methods have been introduced to visualize streaming text
data [5], [22]. CloudLines [28], a novel compact visualization
of event episodes, has been presented to visualize dynamic
time series for the exploration and monitoring of streaming
news data. Researchers also presented a comprehensive tax-
onomy of dynamic data visualization to help users under-
stand the relationship between the changes in data and the
interpretability of visual representations [14]. Several visual
metaphors, such as storylines [42] and sedimentation [25],
[33], have also been proposed to visualize live data streams.

However, the existing techniques that are mainly used
for streaming text data may not work effectively for social
stream data with short text and rich multi-faceted informa-
tion. In addition, a live social stream is usually changing at a
significantly rapid rate. Existing methods that continuously
update their views require significant cognitive effort to
monitor the rapid changes. Furthermore, the lack of an in-
tuitive mechanism to archive important changes for further
exploration is considered an obstacle in the application of
techniques that can track fast-changing social steams.

2.2 Social Media Visualization
Social media visualization has attracted considerable atten-
tion in recent years [16], [24], [44], [48]. Many proposed
methods usually extract places [35] and time [16] from
Twitter data, and then visually summarize such data by
aggregating the messages into places and time. Existing
systems also provide topical overviews of Twitter data [32],
[39], [45]. However, these methods lack sufficient visual-
ization and analytics support to extract and visualize the
ongoing topics in live social streams. For instance, Steiger et
al. [39] has introduced a geographic, hierarchical SOM (Geo-
H-SOM) to extract spatiotemporal and semantic clusters of
Twitter data to provide a topical overview in the spatio-
temporal context. However, Geo-H-SOM cannot handle live
social streams for three reasons. First, it produces a sequence
of SOMs in different timestamps with topic clusters that
are randomly distributed, making the visual monitoring
and tracking tasks difficult. Second, the computation of se-
mantic, geospatial, and temporal similarity among tweets in
Geo-H-SOM is time consuming, along with the requirement
of SOM algorithm computation. Third, the semantic similar-
ity, which is computed based on Latent Dirichlet Allocation
(LDA) [7], requests a predefined number of topics.

At the same time, visual analytics of information diffu-
sion on social media has been the subject of increasing atten-
tion. Researchers have employed novel visual metaphors,
such as sunflower [10], ripple [44], and river [41], to vi-
sualize information diffusion on social media. Among the

methods, only Whisper [10] supports visualization of real-
time diffusion in live social streams. However, Whisper does
not support topic-based visualization and represents every
tweet as a seed in a sunflower. This limitation makes it
difficult to scale it up because drawing all the tweets in the
sunflower can lead to serious visual clutter.

Thus far, only a few systems have been shown to
handle live social streams. Dörk et al. [17] introduced Vi-
sual Backchannel, which utilizes a tailored stacked graph
to visualize the topical changes of an event over time.
ScatterBlogs2 [8] enables users to interactively create task-
specific filters to retrieve highly relevant tweets from social
streams for further analysis. TwitterScope [20] groups the
messages of a social stream into clusters and displays the
clusters in a dynamic map. It models a social stream as
a dynamic graph, with its nodes and edges encoding the
messages and their similarities, respectively. A dynamic
graph layout algorithm and Procrustes projection are used
to ensure visual stability of the map layout. Our method also
produces a dynamic topic map of a social stream, but with
the GPU-based SOM algorithm. The above methods require
users to constantly follow socials stream without detecting
and emphasizing critical moments; thus, users are prone to
miss significant patterns and feel that the task is tedious.

2.3 Event Detection in Social Media Visualization
Numerous event detection methods [38], [40] have been
proposed. Interested readers can refer to a recent survey [21]
for a complete review. This section mainly discusses the
methods used in existing visual analytics systems.

Topic modeling, such as LDA and probabilistic mod-
els [6], [7], which discovers main themes in document collec-
tions has been employed to detect events. For example, Chae
et al. [12] employed LDA to extract and rank major topics.
A seasonal-trend decomposition procedure based on Loess
smoothing (STL) was employed to compute abnormality
scores (z-score) for the top-ranked topics. ScatterBlogs2 [8]
can cluster tweets into topics using an LDA method, and
uses a list of small tag clouds to visually represent the
topics. However, previous methods [8], [12] cannot reveal
the relationship among topics. Moreover, the methods based
on LDA are computationally intensive and the number of
topics must be specified by users.

Meanwhile, incremental clustering methods have also
been used. Thom et al. [43] introduced an incremental
clustering method based on an enhanced Lloyd scheme to
detect spatiotemporal clusters of term usage. Liu et al. [33]
developed TopicStream, which combines the strengths of an
evolutionary tree clustering model, a streaming tree cut al-
gorithm, and a sedimentation metaphor to visually analyze
hierarchical topic evolution. Our tailored SOM algorithm is
an incremental clustering method, but it is accelerated by
GPU to handle live streams more efficiently.

Term tracking methods use keywords that are automat-
ically identified from other channels [4] or those that are
manually defined by users [17], [37] to track and detect
social events. Twitincident detects incidents from emer-
gency broadcasting services [4]. TwitInfo uses a congestion
control mechanism to identify the peaks of high tweet
activity [37] . Our proposed approach uses a similar algo-
rithm to automate subevent detection. Visual Backchannel
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Fig. 1. User interface of StreamExplorer: a timeline visualization with the combination of (a) a visual tree of aging subevents and (b) a line chart of
recent subevents; (c)-(e) three topic maps with a set of interactive lenses; (f) a panel for choosing interactive lenses; (g) options of time units.

treats frequent keywords as topics and uses a stacked graph
to visualize topic evolution [17]. However, keywords may
not adequately characterize the topics. Understanding the
topics with many different, highly rated keywords without
sufficient context is difficult. Understanding massive tweets
using only term tracking methods is difficult, because topic-
based analysis is not supported

Our framework integrates a term tracking method to
detect subevents and an incremental clustering method to
reveal topics in those subevents. The framework maximizes
the advantages and bypasses the disadvantages of the two
methods. Additionally, it is more efficient and scalable, be-
cause it mostly employs the light-weight subevent detection
algorithm to cope with live streams. The GPU-assisted SOM
algorithm is triggered on demand for important subevents
selected by users for further examination. Moreover, it can
enable a multi-stage visualization system, with which users
do not have to constantly monitor and track the live streams.

3 USER INTERFACE

Figure 1 shows our user interface with two major views: a
timeline visualization (top part) for displaying the dynamic
changes in tweet volume and a map visualization (bottom
part) for exploring the social stream from a geographic
aspect (Figure 8(c)-(e)) or topical aspect (Figure 1(c)-(e)).
A user can define an event that he wants to follow and
analyze by providing one or a few keywords in the search
bar located at the top right of the user interface (Figure 1(h)).
A user is allowed to add, remove, or modify the specified
keywords in the search bar of the interface.

The timeline visualization contains a line chart (Fig-
ure 1(b)) and a tree visualization (Figure 1(a)), which pro-
vides an immediate overview of what is going on about
an event at a macroscopic level. The line chart is used to

show tweet activity (i.e., the trend of tweet volume). Recent
subevents, namely, critical time periods (called subevents),
are highlighted using a DICON glyph [11] to show the
multi-faceted visual summary of the tweets in the subevent.
The aging subevents will eventually fade out from the left of
the line chart and be aggregated into the rightmost node of
a subevent tree (Figure 1(a)), such that the sedimentation of
the subevents can be intuitively revealed. The tree organizes
the past subevents hierarchically to facilitate the exploration
and navigation of past subevents.

For further analysis at a mesoscopic level, the map
visualization (located at the bottom of Figure 1) displays a
topical or geographic summary of the tweets in a subevent
selected by a user from the timeline visualization. Regions
with a dark color represent the highly concentrated tweets.
The user is allowed to compare multiple subevents or track
the content/geographic changes of the event in two ways: 1)
he can select multiple subevents and create a series of maps
accordingly, or 2) he can create a single map (Figure 1(c))
for a specific subevent as filter, and then use the filter to
generate maps ((Figure 1(d) and (e) linked to the filter map
using arrows) for other subevents.

The user can further drag various interactive lenses, such
as word lens and bar lens, from the lens panel (Figure 1(f)),
and drop the lenses to any area on the map visualization to
inspect the area from various perspectives. The interactive
lenses thus enable the in-depth and multi-faceted analysis
of a subevent at a microscopic level.

4 A MULTI-STAGE FRAMEWORK FOR PROCESS-
ING SOCIAL STREAMS

This section presents the multi-stage framework and its two
components, namely, a subevent detection algorithm and an
SOM method.
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4.1 Framework

Tracking and understanding the unfolding of an event is
difficult because of the highly dynamic, large-scale stream-
ing data. Numerous computational resources are often re-
quested by existing systems [12], [33] to fully process such
data. Other systems based on term tracking [17], [37] can
efficiently process such data, but lack adequate support for
the in-depth, topic-based analysis and visualization. More-
over, constantly updating a visualization of the processed
data without a proper strategy would easily lead to infor-
mation overload of analysts. Thus, we introduce a multi-
stage framework to reduce the computational overload of
computers and the information overload of analysts.

Figure 2 shows the framework consisting of three parts: a
subevent detector for detecting subevents, a preprocessor for
processing the collected tweets in the detected subevents,
and a map generator for producing topic maps for the
subevents selected by a user. The relevant tweets in the
detected subevents are processed in the data preprocessor
to extract word vectors and stored in a database.

Subevent
Detector

Raw
Data

Data Preprocessor

Database

Interac�ve Visualiza�ons

CacheCache

Map 
Generator

Fig. 2. Framework with four main components: subevent detector, pre-
processor, map generator, and interactive visualizations.

The preprocessor and map generator are relatively ex-
pensive and significantly affect system performance without
a proper strategy. To cope with the problem, we employ a
call-by-need strategy, which relies on the subevent detector
and interactive visualizations to serve as gate keepers. This
strategy also determines the portions of the data to be pro-
cessed. Therefore, StreamExplorer couples a fast subevent
detection method and user interactions with an “expensive”
analytical mining, which occurs once a user decides to
investigate a given slice of data.

4.2 Subevent Detection

Finding and highlighting important subevents can greatly
reduce the efforts exerted in tracking social streams (see
T1 in Section 5.1). We regard the time periods of a social
stream with high tweet activity as important subevents. Our
method detects the subevents characterized by an unusually
high volume of tweets, and then measures the diversity of
the identified subevents.

Our system identifies a subevent from streaming Twitter
data based on a congestion control mechanism used in
TwitInfo [37], which is highly efficient with reasonable pre-
cision and recall rates. The method employs exponentially

weighted moving average and variance with α = 0.125 to
determine whether an unusually large number of tweets
are arriving. Specifically, a new window starts when a
significant increase in tweet count occurs compared with
the historical mean. Following TwitInfo, the current work
identifies the significant increase when the tweet count is
twice as many as the historical mean. Such a ratio can be
considered as the sensitivity threshold of the algorithm. The
window ends when the tweet count returns to the same
level as when it has started, or when a new significant
increase in tweet count is detected. Meanwhile, an event
peak is defined as the moment when the tweet count reaches
the maximum in a given time window. All the tweets
generated within the time window are considered to belong
to the corresponding subevent. Additional details on the
algorithm can be found in [37].

Although the algorithm can detect subevents with high
tweet activity, it only handles the streaming tweet as a
purely digital signal, without considering its semantic con-
tent. To address this problem, we further evaluate the en-
tropy of a subevent using an information-theoretic measure.
The higher entropy a subevent exhibits, the more diverse
the subevent is. The entropy can be computed as follows:

H(X) = −
∑
x∈X

p(x) log p(x)

where X represents the words in a subevent, and p(x) is the
probability of word x in the subevent.

4.3 Self-Organizing Map

Our system employs an SOM algorithm to cluster tweets
and provide a topical summary for a subevent. We use
clustering instead of classification to find topics, because
major events on Twitter can develop rapidly with differ-
ent emerging or disappearing topics over time. Traditional
classification methods, such as support vector machine used
in ScatterBlog2 [8], work effectively for relatively stable
streams, such as a flood event, with known topics. We use
data clustering, because unexpected topics are likely to be
ignored by classification methods.

Although numerous clustering algorithms have been
proposed, we select SOM for four reasons. First, the algo-
rithm maps the tweets to a 2D map, which naturally accom-
modates the intuitive visual metaphor of lenses on the map
for multi-faceted and in-depth exploration. Second, an SOM
preserves the topology of the data (i.e., local neighborhood
relations) and does not impose a hard partition on such
data, thereby clearly revealing the relative or qualitative
mutual relationships among the tweet clusters. Third, the
algorithm is parallel in nature and can be easily accelerated,
thus enabling the interactive visualization of streaming data
on a personal computer equipped with a commodity GPU.
Fourth, a well-trained SOM can also be used as a classifier
that can track fast topical changes efficiently.

An SOM is defined as a series of neurons organized
in a 2D grid. Each neuron has a weight vector with the
same dimension as the input vectors. The weight vector
is initialized randomly. At iteration t, the algorithm selects
input vector xi, and then finds the neuron with the shortest
Euclidean distance to xi. The neuron is called Best Match
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Unit (BMU). The weights of the adjacent neurons of the
BMU are updated toward xi. The degree of the update
decreases with the iterations and the distance from the
BMU. The above procedure repeats until the map becomes
stable. The result is a trained SOM.

4.3.1 Accelerating SOM
The system should efficiently produce an SOM for tens of
thousands of tweets. However, the computation of the basic
SOM algorithm is time-consuming. Therefore, we use the
batch-type SOM [27], a variant of the basic SOM, in our
system. In the batch-type algorithm, the training set is gone
through for one time, which is called an epoch. The weight
vector of neuron u at epoch t is updated as follows:

wu(t) =

∑if
i=is

hbi,u(t)xi(t)∑if
i=is

hbi,u(t)
(1)

, where is and if denote the start and end indices of the
input samples at t, respectively; bi is the BMU for data
vector i; and hbi,u is the neighborhood function, which
is taken as a Gaussian function, thus ensuring that the
magnitude of the update decreases with the distance from
bi to neuron u. We note that the width of the neighborhood
function (i.e., standard deviation) decreases monotonically
with t. The weight vector of each neuron can be computed
in parallel at each epoch. Thus, the algorithm is significantly
faster than the basic sequential SOM.

When the clustering is finished, each tweet in a subevent
is associated to its corresponding BMU. Hence, tweets with
similar content are distributed in adjacent regions, thereby
creating topic clusters.

4.3.2 Creating Stable SOMs
Tracking topical changes in a social stream is regarded as
an important task for social media analytics [37] (C1 in
Section 5.1). Our proposed SOM method provides a solid
foundation for this task. An intuitive solution is to create
a series of SOMs that a user can compare and track to
understand the topical changes in a social stream. However,
original SOM algorithms cannot ensure the dynamic stabil-
ity of the topics in the maps, rendering the comparing and
tracking tasks quite difficult. The random initialization of
the weight vectors of the neurons produces topic maps with
randomly distributed topic clusters. To solve this problem,
we reuse the weight vectors of the neurons in the previous
topic map as the initial estimate of the weight vectors of the
neurons in the present topic map. This method can largely
maintain stable topic maps for adjacent subevents.

Another issue in creating a series of topic maps is
ensuring that a consistent global word dictionary is used
for building tweet vectors, whose dimensions represent the
same words across different maps. However, having such
a dictionary is difficult, if not impossible, because a social
stream is highly dynamic and the words used in the tweets
can be difficult to predict in advance. Gradually building
the dictionary is time-consuming and space inefficient. To
handle this problem, we introduce feature hashing [46], also
known as the hashing trick. This fast and space-efficient
method maps arbitrary features (i.e., words in tweets) to
indices in a vector. The method applies a hash function

to the features and then uses the hash values directly as
feature indices of the vector. Therefore, a vector of fixed-
length can be easily built. With the method, vectors of the
same dimension across different subevents can be used to
generate stable topic maps.

4.3.3 Refining SOMs
StreamExplorer allows users to iteratively refine SOMs by
merging clusters or by splitting a cluster. When two similar
clusters are identified, users can simply select one cluster
and drag it to the other cluster area. The system automati-
cally selects the tweets of the source cluster, and the selected
tweets are then assigned to new neurons in the target
cluster by running the SOM algorithm again. In addition,
the system can split a large cluster into smaller clusters
using a map in the cluster region with a higher resolution.

5 VISUALIZATION TECHNIQUES

This section presents the design goals for StreamExplorer,
followed by the visual design and interactions.

5.1 Design Considerations
To design StreamExplorer, we held interviews and dis-
cussion sessions with six data analysts from universities,
including undergraduate students, graduate students, and
professors. The participants are not the co-authors of this
paper, and they have background in computer science and
communication and media studies. They are familiar with
at least one analysis tool, such as SPSS and R. They track,
analyze, and collect Twitter data for their research or course
projects. Most of them know basic visualizations, such as
line and bar charts. The discussion sessions intend to un-
derstand how the analysts track and explore a social stream
(Twitter). We derived a set of design requirements from their
feedback and from the knowledge we gained from literature
review. The design requirements have been further refined
by a series of follow-up discussions with the participants.
T Real-time Tracking of a social stream.

T1 Highlighting critical periods from a live social stream.
Constantly tracking a social stream can easily over-
whelm users. Therefore, the system should automati-
cally detect and highlight critical periods (subevents)
that require considerable attention [37].

T2 Displaying multi-facet overview of subevents. The sys-
tem should provide a multi-faceted overview of a
subevent. This information can help analysts deter-
mine which subevents are worthy of further analysis.

T3 Revealing the ebb and flow of a social stream. The social
stream should be displayed in the context of recent
developments [28]. Animated changes in visualiza-
tions can indicate the changes of the social stream
that are caused by incoming messages [17].

E Multi-perspective Exploration of subevents.
E1 Reviewing past critical periods. A social stream can

produce many subevents quickly, thus increasing the
likelihood of users missing several of these. The
system should allow users to review past subevents.

E2 Summarizing a large volume of microblog messages. A
topical, visual summary of selected messages should
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be provided so that users can quickly identify the on-
going topics [8], [49]. The visual summary also serves
as a starting point for multi-level visualization [13].

E3 Allowing for in-depth exploration of the four Ws (who,
what, where, and when). The four Ws regarding
an event are considered as the basic elements of
information-gathering [45]. The system should help
explore the four Ws of any subevent.

C Visual Comparison of subevents and topics.
C1 Showing dynamic topical and geospatial changes. Track-

ing topical and geospatial changes with respect to an
event is critical for many applications. The system
should properly visualize the changes [17], [49].

C2 Supporting comparative analysis. Comparative analysis
is strongly demanded in visual text analytics [15]. The
system should help investigate the similarities and
differences among several topics being discussed.

5.2 Visualization Design

Figure 1 shows our user interface with two major views:
a novel timeline visualization for displaying the dynamic
changes in tweet volume (upper part in Figure 1 for T1-T3
and E1), and a map visualization for exploring the subevents
from the geographic or topical aspect (lower part in Figure 1
for E2-E3 and C1-C2). The interactive lenses allows for
further exploration of the four Ws (E3) of a subevent.

5.2.1 Timeline Visualization

Our timeline visualization consists of two components,
namely, trend visualization and sedimentation visualiza-
tion. We use a DICON to show the profile of a subevent.

Number of followers
Sen�ment

is Verified or notis Verified or not a b

cd

Fig. 3. The process of generating a DICON. (a) A tweet with three
properties. (b) Each property is encoded by a cell. (c) Cells are packed
to generate an icon. (d) Icons are grouped.

Trend Visualization. The right part of Figure 1(b) is
an animated line chart that displays the tweet volume
regarding an event over time to reveal the ebb and flow
of the event (T3). A user can choose different time units
(e.g., second, minute, and hour) on the left of the timeline
visualization. The subevents detected by the streaming al-
gorithm (Section 4.2) are highlighted to relieve the burden
of the monitoring task. This is done by using a DICON in
the trend visualization.

DICON Visualization. In accordance with the sugges-
tions of our end users, critical periods should be high-
lighted from a social stream (T1). Meanwhile, a multi-
faceted overview of the tweets during a critical period
should be displayed (T2). Highlighting critical periods can
be achieved easily by changing the background color of
the time periods. Multidimensional data can be displayed
using many methods, such as parallel coordinate and scatter
plots. However, the space and context of trend visualization
constrain us from using these methods.

DICON [11] is an icon-based compact method that
visualizes multi-dimensional clusters. Figure 3 shows the
process of generating a DICON. DICON helps illustrate
both the overall data distribution (the pie chart) and the
individual properties (the small cells inside each pie slice).
Each cell indicates a property of a data instance, whose size
and color double encode the property value. Therefore, for
those instances (i.e., tweets) that have very small values in
certain properties, the corresponding cells are expected to
have a very small size and a very light color. The other cells
with larger property values will be highlighted. The layout
of the cells in each pie slice is also optimized, such that the
(relative) positions of the cells of the same data instance are
laid out at the similar places inside each cell. This helps
users reconnect the splitting pieces together.

We selected three properties (i.e., number of followers,
sentiment of tweet, whether author is verified or not) to generate
DICONs. Number of followers and whether author is verified or
not are fetched via the Twitter streaming API. The sentiment
of a tweet is calculated using a widely-used sentiment
analysis tool provided by Stanford CoreNLP [36]. Moreover,
this approach is efficient in handling streaming data. The
accuracy of the method is higher than 80% 1.

We choose only a part of tweets of a subevent to generate
the diagram for two reasons. First, social streams usually
contain much irrelevant and noisy information. Visualizing
all tweets of all users may obscure the important and
relevant information. Second, filtering tweets can reduce
the number of tweets to be processed by the system. Prior
research reveals that influential users play a gate-keeping
role in spreading information [47]. People tend to trust
the content produced by influential users more than other
sources [23]. Thus, the proposed system uses the tweets
of top influential users, which are identified by a well-
established method called Klout [1], to generate DICONs
to provide concise and informative overviews of subevents.
After experiments, we found that top 10% influential users
can help achieve a good balance between time performance
and coverage quality.

Sedimentation Visualization. As suggested by our end
users, the system should reveal the dynamic changes of a
social stream in the context of its past evolution (T3). The
system should also allow them to easily review past signifi-
cant subevents (E1). The past subevents will eventually fade
out in a traditional line chart, which displays streaming data
such as stock prices. A list of past subevents can be provided
to users in another list view. However, this solution may
create a gap between the line chart and the list view. Hence,
we use the metaphor of visual sedimentation [25] to main-

1. https://nlp.stanford.edu/sentiment/
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tain a consistent mental model. This is achieved by keeping
aging subevents visible by aggregating them into strata over
time. The metaphor is intuitive and can clearly preserve the
chronological order of incoming data while avoiding clutter,
with smooth transition between incoming and aging data.

A linear visualization similar to SendiClock [25] can be
used to display the sedimentation process by aggregating
subevents into compact layers. Longer time units are en-
coded as strata. However, after demonstrating a prototype
of this visualization to end users, we identified the following
limitations of this method. First, users feel confused about
the layers, which are dynamically changing to reserve space
for more incoming subevents (tokens). The change in the
size of a layer may convey the wrong impression of the
change of tokens contained in that layer. Second, the past
subevents from the layers are difficult to select, review, and
explore.

Year2014
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Day 25th 

02:00 Collapse
New 
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23:00 
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ca b

Fig. 4. (a) A new subevent arrives. (b) The node of Day 24th is collapsed,
and the two super nodes of Day 25th and 02:00 are added. (c) The new
subevent is added as the rightmost leaf of the tree.

To address the problems, we design a novel visualiza-
tion using a tree (Figure 1(a) and (Figure 4) to show the
sedimentation in a hierarchical manner. The visualization
can also circumvent the problem of size confusion using the
collapse operations of nodes to reserve space for incoming
tokens. The hierarchical representation can easily scale up to
handle a large number of subevents, thus allowing for the
intuitive navigation and exploration of the past subevents.

A tree node represents a layer of the strata (e.g., the
set of subevents) in a time range (e.g., week, day, hour),
and a tree edge implies a hierarchical relationship (e.g.,
a minute node includes a set of second nodes). A higher
node in the tree encodes a more coarse-grained layer of
aggregated subevents. The brown nodes denote super nodes
with a fixed size and all its child nodes expanded, whereas
the DICON nodes represent regular nodes with their sizes
encoding the numbers of subevents within the nodes. A ring
is concentric with a DICON node, whose length indicates
the mean of the diversity magnitude of the subevent.

We use an algorithm to build and maintain the tree.
Figure 4 illustrates the process of adding a subevent to the
tree. An aging subevent (token) enters the sedimentation
visualization from the entry point in the left border of
the changing line chart (Figure 4 (a)). The algorithm traces
down the current tree along a path from its root toward its
rightmost leaf. If the time range of a node that is currently
being visited does not cover the time of the token, then
the current node is collapsed (Figure 4 (b)) and becomes

a regular node (see the blue node of Day 24 in Figure 4 (c)).
A new node is then added to the tree as the rightmost
leaf node. Meanwhile, the algorithm continues to handle
two cases. In the first case, the time unit of the current
node (e.g., minute) is only one level higher than that of
the subevent (e.g., second). A new node representing the
subevent is added to be the rightmost child of the current
node and the algorithm ends. In the second case, the time
unit of the current node (e.g., day) is significantly larger than
that of the subevent (e.g., second). A series of super nodes
are recursively added as the rightmost nodes of the tree (see
the brown nodes with the dashed borders in Figure 4 (b))
until the condition of the first case is met.

The visual sedimentation provides users with a quick
overview of the past subevent distribution (E1). When a user
clicks a node, it is expanded to reveal its child nodes. By
recursively doing this, the user can quickly locate a subevent
(i.e., a leaf of the tree).

5.2.2 Map Visualization

For further exploration of the subevent (E2, E3, C1, and
C2), a map visualization is created and shown to a user
(Figures 1 (c)-(e)) when a subevent is selected from the
timeline visualization. The map metaphor can visually sum-
marize structures and clustering information in different
kinds of data, such as graphs [19] and text [39]. Two types of
maps can be chosen by users: an ordinary geographic map
showing the geolocations of the related tweets or users and
a topic map summarizing the content of the tweets on the
subevents. On the one hand, the geographic map can help
users understand the distribution of the tweets or the users
posting the tweets about the subevent on the map. On the
other hand, the topic map presents a visual summary of the
tweet content by using the SOM algorithm (Section 4.3). We
use the heatmap method to draw both maps, in which the
darker regions represent those with more users or tweets.
Maps are commonly found everywhere and are intuitive for
users to interpret and understand.

Keyword Selection. We place important keywords on
the topic map to improve its readability (Figures 1(c)-(e)).
To ensure the expressiveness and informativeness of the
keywords, we employ a method similar to TF-IDF [30] in
order to measure the goodness of the keywords for each
map unit. The topic map with the selected keywords allows
users to quickly identify the main topics of the subevent
without reading the underlying tweets (E2).

Topic Tracking. Understanding the evolution of topics in
a social stream (C1) is an important task. Stacked graphs are
widely used to track and visualize temporal variations of
topics. However, stacked graphs cannot reveal the topology
(or relationship) of the topics. In communication research,
researchers want to track the evolution of individual topics
over time as well as detect and understand any change
in the topic topology. To overcome this issue, we allow
a user to choose multiple subevents from the timeline
visualization and create a series of topic maps for each
subevent (Figures 8(f)-(h)). The stable and consistent topic
maps (Section4.3.2) preserve the topic topology to facilitate
visual tracking and comparison of topics.
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Fig. 5. Interactive lenses: (a) pie lens, (b) bar lens, (c) word lens, (d) list
lens, (e) network lens, (f) Geomap lens.

5.2.3 Interactive Lenses for Multi-faceted Visualization

Multi-faceted analysis is highly desired, because users want
the system to support the interactive exploration of the
four Ws (E3) in an intuitive manner using familiar visual
encoding or metaphor. Therefore, the system uses map
visualization as a basis and employs interactive lenses to fa-
cilitate multi-faceted exploration in the map. The metaphors
of maps and lenses are commonly found in daily lives. Thus,
they are intuitive for our end users to understand and use.

Interactive lenses (or magic lenses) are typically used in
data visualization to provide alternative visual representa-
tions of the data in selected local areas. Figure 1(f) shows a
panel from which users can choose the data dimensions,
such as keywords, for further exploration. When a data
dimension is selected, a set of visual icons representing
different types of lenses is shown under the selected data
dimension. The users can drag any visual icon to an area in
a map. An interactive lens is then shown to provide an al-
ternative visual representation for the region, thus enabling
the user to see and examine the data in the given area
from a certain perspective (i.e., selected data dimension).
The system currently supports several types of interactive
lenses (Figure 5), which are detailed below.
* Pie lens provides a visual summary of the data distribu-

tion by using a pie chart for a data dimension.
* Bar lens is similar to the pie lens in providing an overview

of the data distribution but uses a rectangular bar chart.
* Word lens presents a word cloud that visually summa-

rizes the keywords contained in any selected map area.
* List lens simply shows a detailed list of data items such

as users or tweets in any selected map area.
* Network lens displays the network structure of the

retweet network in any selected map area.
* GeoMap lens displays the geolocations of the tweets or

users in a topic map area.
With the interactive lenses, users can readily compare

different areas in a topic or geographic map from different
views (C2). The users simply need to drag the lenses of a
certain type (e.g., word lenses) to the areas for side-by-side
comparative analysis.

5.3 User Interactions

In addition to basic interactions, such as pan and zoom,
several other interactions are supported by StreamExplorer.

Adjusting visual activity. Users can adjust the level of
visual activity of the system by changing the time granu-
larity (Figure 1(g)). For example, if tracking a social stream
in seconds results in visualizations that change excessively
fast, then users can choose the minute granularity.

Refining topic maps. The SOM algorithm can produce
reasonable and interpretable topic maps in most cases. How-
ever, some scenarios continue to require end users to refine
the topics. This function is important for advanced users
who need to perform in-depth, rigorous studies and publish
the results for a wide audience. The system currently allows
users to merge or split topic clusters by brushing and
dragging related areas (see Section 4.3.3 for details).

Tracking topical changes. Users can simply choose a
topic map and then use it as a classifier when tracking the
topical changes. When a social stream has been followed for
a sufficient time period, the most recent topic map can cover
majority of the topics that have been discussed thus far in
this social stream. Using a map as a classifier is beneficial
for users for two reasons. First, the system can generate
more stable maps that are significantly easier to follow
and understand. Second, the performance of the system is
improved using the classifier instead of the SOM algorithm.

6 IMPLEMENTATION

Our system has two separate parts from the implemen-
tation viewpoint. One part is responsible for computing
and storing streaming data on a server, and the other part
is responsible for visualizing the data as a web browser
application on a client. The client program was developed
using HTML5 and JavaScript. We also employed a widely-
used JavaScript visualization library, namely, D3.js, to create
visualizations in clients. We developed the server program
using ASP.NET, and used SignalR to add real-time web
functionality to our application. A social stream is handled
in the server program by running a subevent detection
algorithm, which is implemented by C#, and storing the
data to a Microsoft SQL Server. The batch-type SOM method
(see Section 4.3) is naturally parallel [27]. Thus, we used
NVIDIA CUDA to implement the algorithm and accelerate
its performance. However, implementing the method using
CUDA was quite challenging, because the vector of a tweet
could be very high dimensional. To address this issue, we
used a dimensionality reduction algorithm (i.e., Random
Mapping), commonly used by SOM methods, to reduce the
dimension of the tweet vectors [26].

Fig. 6. Timeline visualization: (a) a visual tree of aging subevents, in
which Node 11 appears abnormal with the shortest ring; (b) a line chart
with three highlighted subevents regarding three goals.



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2764459, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 7. Case study of the “Brazil 1-7 Germany” football match: (a) visual tree with the time unit of minute; (b) visual tree created by expanding the
node of “17:00”; (c)-(d) two topic maps corresponding to the subevents of the node of “11” and “25,” respectively.

7 RESULTS

This section presents three case studies with respect to the
2014 FIFA World Cup, the Ebola outbreak in 2014, and the
Brexit event in 2016 to demonstrate the use of our system.
The FIFA data set contained around 100 million tweets
collected using 823 keywords, such as fifa, worldcup, #gre,
and #bra, from June 10, 2014 to July 16, 2014. The Ebola data
set contained around 20 million tweets with the keyword
“ebola” from January 1 to December 12, 2014. The Brexit
data set contains around 271,000 geo-referenced tweets with
the keyword “brexit” from June 23 to June 25, 2016.

We evaluated the event detection algorithm with pre-
cision and recall. Two researchers collected ground truth
events and only the events which they both agreed were
retained. The ground truth on the soccer game was created
based on the online game summaries and game video. For
the ground truth on Ebola, we defined the major events
as the first announcements of confirmed cases by the re-
spective nation-states, their first deaths, and their first sec-
ondary transmissions based on the timeline data recorded
by Wikipedia. The ground true events of the soccer game
and Ebola cases are concrete and clear. Thus, a researcher
coded the events and the other researcher examined the
coded events to ensure the validity. The ground truth on
Brexit was acquired from the script live broadcast. Brexit
is more complex as it covers diverse topics. Therefore,
the two researchers coded the Brexit events independently.
We measured the inter-coder reliability with Krippendorff’s
Alpha. The alpha value is 0.832, suggesting that the coding
process was reliable.

Regarding the FIFA World Cup, Ebola and Brexit
datasets, we collected 22, 10, and 9 ground truth events,
respectively. The value of precision and recall were 94%
and 72%, 26% and 70%, and 75% and 67% for the above
three datasets, respectively. The performance is comparable
to that of other existing event detection methods [21].

7.1 Time Performance Analysis
We deployed and tested the system on a laptop with Intel i5-
4210M CPU (3M Cache, up to 3.20 GHz), 16GB RAM, 1TB

hard disk, and Nvidia GTX 850M GPU (4GB RAM). The
client program can run interactively on the laptop. To eval-
uate the performance of the streaming tweets and detecting
subevents, we tested it with batch input of one million
tweets. It finished processing the tweets in 158 seconds, so
its time performance was 6300 tweets per second on the
laptop. Every second, on average, around 6000 tweets are
tweeted on Twitter 2 and the public streaming APIs offered
by Twitter only return one percent of the requested tweets.
In many scenarios, the system only needs to update in every
minute or in even longer time. Therefore, the streaming
component can efficiently cope with a social stream. The
SOM algorithm was executed for a selected subevent on
demand and accelerated by the GPU. In the following case
studies, the largest subevent can have around 45,000 tweets,
which can be clustered by the SOM algorithm in 8 seconds.
With our multi-stage framework, the system can achieve
interactive performance.

7.2 2014 FIFA World Cup

We conducted the first case study to show the use of our
system to track and analyze a social stream. In the case
study, the proposed system was used to visualize a social
stream with respect to the 2014 FIFA World Cup. We focused
on the “Brazil 1-7 Germany” football match that took place
on July 8, 2014. The match was the most discussed single
sports game ever on Twitter [2]. The timeline visualization
in Figure 6 shows the trend of tweet count is updated
every 15 seconds (Figure 6(b)) with three recently detected
subevents, corresponding to the three goals scored by the
German players at 23’, 24’, and 26’, respectively.

The visual tree (Figure 6(a)) shows a visual summary
of the distribution of the aging subevents over time. From
the tree, node 11 (i.e., the subevent detected at the 11th
minute of the match) had the unusually shortest concentric
ring compared with other nodes. The short concentric ring
encoded the least diversity among the nodes, indicating
that the subevent within this node highly concentrated on

2. http://www.internetlivestats.com/twitter-statistics/
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Fig. 8. Case study of the Ebola outbreak: (a) visual tree of the past subevents with respect to the Ebola outbreak in 2014; (b) visual tree created by
expanding the nodes of July, September, and October in the original tree shown in (a); (c)-(e) geographic maps showing the geospatial changes of
three subevents highlighted in (b) as well as the topic maps showing the topical changes of the three same subevents.

a small number of topics. Furthermore, many cyan cells
suddenly emerged in the DICON, implying that many im-
portant verified users posted tweets in this subevent. We
examined the topic map of the subevent and found that
this node contained an important subevent, i.e., the first
goal scored by a German player (Thomas Müller). Several
keywords, such as “goal” and “mullergoal,” were used
intensively and dominated the map, thus producing the
least entropy.

Figure 6 illustrates the recently detected and aging
subevents that occur in seconds, but the visualization
changes too fast to follow. To adjust the visual activity
level, we simply changed the time unit from second to
minute to provide a higher-level overview of the subevents
(Figure 7(a)). We expanded the node of 17:00 in Figure 7(a)
and obtained a new tree (Figure 7(b)). Compared with the
tree in Figure 6(a), the tree in Figure 7(b) shows less nodes,
which consistently corresponded to the major events, such
as the goals scored in the match.

As shown in Figure 7(b), node 25 (i.e., the node at 17:25)
had the shortest concentric ring and appeared to be more
unusual compared with the other tree nodes. Moreover, red
cells dominating the bottom right of the DICON indicated
the overwhelming negative sentiment in this subevent. Two
related topic maps (Figure 7(c) and (d)) were used to com-
pare the topics discussed in nodes 11 and 25. Node 11
covered the time period when the German team scored the
first goal, and node 25 covered the time period when three
goals were scored by the German team in a short time. Node
11 covered diverse topics, such as “defending,” “Neymar,”
“muller,” “goal,” and “corner.” By contrast, the topic map
of node 25 exhibited fewer topics denoted by, for example,
“wow,” “Neymar,” and “over.” Through the interactive
word and list lenses, we found that the topic clusters in
node 25 mostly reflected the disappointment of the fans of
the Brazil team. As shown by the pie lens in Figure 7(d),
“#German” was the most frequently used hashtag in the
topic cluster of “goal.” Furthermore, we used a network lens
to show the retweet network in the topic cluster denoted
by “omg.” The lens showed that “MarcusButler” was the
influential user, whose message “Oh, wow Germany!!!” was
retweeted by many other users.

This case study proves the usefulness of our system in
exploring a social stream. The effectiveness of the subevent
detection algorithm and the entropy measure is demon-
strated as well.

7.3 Ebola Outbreak
We conducted the second case study to show the usefulness
of the system in reviewing and analyzing past subevents.
As the news event on Ebola lasted a long time, we used the
time unit of days to detect and visualize the subevents.

From the DICON nodes (Figure 8(a)), we found that
most of the nodes were occupied by red cells, indicating
that a negative sentiment dominated the Ebola outbreak
event. We also found that some cyan cells suddenly emerged
in July and kept emerging until December, revealing that
some important verified Twitter users posted tweets during
these periods. Furthermore, although the nodes of July,
September, and October exhibited nearly the same size, the
yellow cells of September and October are much darker.
We then interacted with the tree by expanding the reg-
ular nodes of July, September, and October (Figure 8(b)).
From the leaf nodes of July, we saw that it was July 25
when the cyan cells emerged. We subsequently created a
series of geographic and topic maps (Figures 8(c)-(e)) for
subevents to track geospatial and topical changes over time.
The sequence of the geographic maps revealed the changes
in geolocation distribution of the tweets within the three
subevents selected, which occurred on July 25, September
16, and October 1. The maps showed that most tweets came
from Nigeria and United States.

To understand why Nigeria and the United States gar-
nered media attention on those dates, we used the topic
maps (Figures 8(c)-(e)) for further analysis. Figure 8(c) illus-
trates some major topic clusters, such as “Nigeria,” “Lagos,”
and “Liberia.” Through the interactive lenses, we found an
Ebola outbreak in Nigeria caused by an ill traveler from
Liberia, who died on July 25. We then studied the remaining
topic maps (Figures 8(d) and (e)). The main topic clusters,
such as “Obama,” “announce,” “troops,” and “Africa,” (Fig-
ure 8(d)) revealed that the corresponding subevent was
mainly caused by the heated discussion about Obama’s
announcement on September 16 to send 3,000 troops to
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Fig. 9. Case study of the Brexit vote event: (a-b) visual tree of the past subevents; (c-g) topic maps showing the topical changes of corresponding
subevents occurred at 23:00 on June 23, and at 00:50, 02:50, 05:00, 16:50, 18:50 on June 24.

fight Ebola in Africa. Figure 8(e) shows some topic clusters,
such as “first spreading,” “Dallas,” and “patient,” obviously
revealing the first Ebola case diagnosed in the United States.
This example proves the usefulness of the maps for a quick
analysis of the past subevents.

Our system allows a user to interactively refine a topic
map. For instance, we merged the two separate clusters,
which are both denoted by “patient” in Figure 8(e) by
intuitively dragging the left to the right cluster area. Fig-
ure 1(c) presents the refined result. As can be seen, the
merged cluster of “patient” appeared to be larger, and the
original left cluster was replaced by a new topic cluster
denoted by “hospital.” Furthermore, the refined topic map
(Figure 1(c)) was used as a classifier to create two topic maps
for the subsequent subevents on October 8 and October 15.
Figure 1(d) and (e) depict the results, which maintain similar
topics consistent and stable on the map. Thus, the generated
maps significantly eased the difficulty of visual comparison
and tracking of the topic changes among the maps. The
topic map in Figure 1(d) shows topic clusters denoted by
“Duncan,” “Dallas,” and “died.” These results indicated
that the first Ebola patient (Thomas Duncan) diagnosed in
the United States died of Ebola in Dallas on October 8.
The topic clusters denoted by “Dallas” and “Texas” became
larger again in Figure 1(e). Using interactive word and list
lenses, we found that these expanded topic clusters were
mainly caused by the breaking news that a nurse who
came into contact with Thomas Duncan was diagnosed with
Ebola in Dallas, Texas.

This case study shows the usefulness of our system in
reviewing past subevents. It also shows the use of our SOM
method to ensure the stability of a map sequence.

7.4 Brexit Vote
We conducted the third case study to show the effectiveness
of our system to track and understand a social stream with
DICONS and a sequence of topic maps. Given that the
Brexit vote process and discussion lasted around two days,
10 minutes of time unit was chosen to better reflect the
dynamics during the event.

The visual tree (Figure 9 (a-b)) presents a visual sum-
mary of the distribution of the subevents regarding the
voting process. We found that most of the nodes before 05:00
AM of June 24 had relatively shorter concentric rings, indi-
cating that the subevents within these nodes concentrated
on a small number of topics. However, the concentric rings
of the nodes after 5:00 AM, June 24 were relatively longer,
implying that the subevents within these nodes have more
diverse topics. We further examined the topic distributions
with a series of topic maps for the nodes.

Figure 9 (c-g) presents the topic maps of the first event
(nodes of 23:00 on June 23), and subsequent selected events
(nodes of 00:50, 02:50, 05:00, 16:50, and 18:50 on June 24).
We found that in Figure 9 (c), several keywords, such as
“Newcastle” and “remain”, were the most salient among all
the keywords. By examining the detailed tweets, we found
the vote result of Newcastle to be 51% remain (65,404) and
49% leave (63,598). The votes for remain and leave were
rather close, and the topics were basically about discussion
and controversy about brexit. However, as time went on,
keywords like “Brexit” and “voteleave” started to emerge on
the topics maps (Figure 9 (d)). After examining the related
tweets, we found that more and more cities’ vote counting
had been completed, and the results eventually proved to
be “leave” (e.g., 110, 000+ lead for #Brexit).
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In the visual tree, the concentric ring of node 02:50 on
June 24 was short, indicating that the discussion highly
concentrated on a small number of topics. From the corre-
sponding topic map (see Figure 9 (e)), we found interesting
topics of “Farage” and “brexit.” Through the interactive
word and list lenses, we found that the topic of “Farage”
mainly emerged due to the declaration in advance of a Brexit
victory by Nigel Farage, the leader of the UK Independence
Party, as well as his calls for David Cameron to resign. We
also found others’ criticisms for Farage’s claim of Brexit
victory. Furthermore, the node of 5:00 on June 24 was large,
and the green cells started to emerge at the bottom right
of the DCION, indicating that more users were involved,
and that the sentiment appeared to be positive. Moreover,
keyword “remain” does not show up on the topic map
(see Figure 9 (f)). It seems that the voting result of Brexit
had almost been settled at that time period, and users who
supported brexit were already tweeting and celebrating.

After the decision of Brexit, we were interested in what
topics emerged on Twitter as the concentric rings of the
nodes after 5:00 AM of June 24 became longer (Figure 9
(b)). In addition, the number of blue icons referring to the
number of verified users decreased, and the number of
red cells indicating negative sentiments increased. Thus, we
selected the nodes of 16:50 and 18:50 on June 24 to unfold
the hidden patterns. From the two topic maps (Figure 9 (g)),
the keyword “notmyvote” emerged and started to become
popular. An examination of the tweets indicated that the
users not only tweeted about the results of Brexit, but
also started to complain about it (e.g., #notmyvote, #remain,
#united) and called for a revote.

This case study presents the effectiveness of StreamEx-
plorer in understanding the patterns behind a streaming
event with a series of consistent topic maps, as well as the
overview indication of temporal DICON nodes.

8 USER EVALUATION

Next, we conducted a laboratory study to examine how well
users can use StreamExplorer to track, explore, and gain
insights into social streams. The study also aimed to find
any usability issues for improving the system.

8.1 Participants and Data
We invited 13 data analysts, including nine male and four
female students, to evaluate the proposed system. Six were
undergraduate students; seven were graduate students. The
participants were recruited from different departments, in-
cluding Electronic Engineering (2), Mathematics (4), Digital
Media (3), Psychology (1), and Agronomy (3). They were not
the co-authors of the paper. We pre-screened participants to
ensure that they all had experience in analysis. The partici-
pants were identified as P1-P13, respectively. The evaluation
used the FIFA dataset described in Section 7. The period of a
soccer match is relatively short; therefore, it is more suitable
to use the dataset for simulating an analysis scenario.

8.2 Tasks and Procedure
In the beginning of each study, we demonstrated every de-
tail of StreamExplorer and gave each participant a tutorial.
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Fig. 10. Evaluation tasks and analysis of the passing rates

Once each participant became familiar with the system,
the dataset was loaded, and the tweets were streaming
sequentially to simulate a real-world scenario. To ensure the
proper length of the study, we streamed the tweets at 3x
faster speed. Thus, the 90-minute football match would last
30 minutes. Then the participants were asked to complete a
series of tasks (Figure 10) using StreamExplorer to track and
explore the social stream. These tasks were classified into
three categories corresponding to the design rationale (Fig-
ure 10); hence individual visualization components could
be properly covered by the tasks. Participants could ask
for further explanations of features of StreamExplorer when
necessary. The participants were then asked to rate different
aspects of StreamExplorer on a Likert scale (1 to 7 ranging
from strongly disagree to strongly agree) when they finished
the tasks. The task-based evaluation would help the partici-
pants better understand the system, thus ensuring that more
objective and comprehensive feedback can be elicited from
the participants regarding the individual functionalities of
the system and the system itself as a whole. At the end of
each study, users are allowed to explore the system freely,
and we conducted a post-study interview to collect the
feedback of the participants. The whole study lasted around
1.5 hours for each participant.

On average, the participants scored 7.3 out of the 8 tasks,
and the average passing rate for the tasks was 91.3% with
standard deviation of 0.11. The passing rates for T1, T2, E1
and C2 were all 100%, demonstrating the effectiveness of
StreamExplorer in tracking the critical time periods, influ-
ential users, and the difference of the emerging topics. The
passing rate for E3 (What were the 4Ws in the fifth subevent?
Who spread the information?) was one of the lowest, possibly
because the users had not seen such isocontour maps before.

8.3 Results
8.3.1 Questionnaire
The participants finished a questionnaire with nine ques-
tions. Figure 11 presents the questions and average user
ratings. For each question, users were asked to rate their
satisfaction regarding three categories, namely, tracking, ex-
ploration, and comparison, which corresponded to the design
rationale. For example, Q1 corresponded to all three design
considerations, whereas Q4 and Q5 (i.e., the map visualiza-
tion) only corresponded to latter two design considerations.

As indicated by Q1, StreamExplorer received overall
ratings of 6 (tracking), 5.9(exploration), and 6.1(comparison) in
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Q1. Overall, I am satisfied with the system

Q2. The system is easy to learn

Q3. The system is easy to use

Q4. I feel the map visualization is useful

Q5. I feel the map visualization is intuitive

Q6. I feel the timeline visualization is useful

Q7. I feel the timeline visualization is intuitive

Q8. I feel the interactive lenses are useful

Q9. I feel the interactive lenses are intuitive
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Fig. 11. Analysis of the ratings: all questions received an average rating
greater than five, which was very encouraging.

terms of participants’ satisfaction. Based on the results of
Q2 and Q3, StreamExplorer seemed to be easy to learn and
use (all the ratings with respect to the three design consid-
erations were above 6). This is an encouraging outcome, be-
cause new users could complete fairly complex exploration
tasks with minimum assistance during the experiment.

When considering each component separately, the par-
ticipants felt that the visual representations and interactions
of the timeline visualization and interactive lenses were
intuitive during the exploration process (Q5, Q7, and Q9).
However, even though the map visualization component
was thought to be useful (Q4), the participants found the
topic map based on isocontours difficult to understand at
first glance (Q5). After discussing with the participants, we
found that this perception was due to the lack of metaphors
in their mind. Nevertheless, after demonstrating the use
of topic maps, they became used to it. We also found
that the timeline visualization received the highest tracking
scores (Q6-7) regarding usefulness and intuitiveness. After
interviewing the participants, we found that they greatly ap-
preciated the metaphor of visual sedimentation during the
tracking process. Overall, all questions received an average
rating greater than five, which is very encouraging.

8.3.2 User Feedback
System usability. The participants all confirmed that the
system was intuitive, clear, and useful. P3 mentioned, “The
tool is great. I can track an event easily and understand the
ongoing topics quickly.” His comment touches many of the
design considerations of our framework. All the participants
appreciated the two key features of subevent real-time track-
ing and reviewing. A total of 11 out of the 13 participants
were impressed by the capability of the system to support
the summarization and dynamic topical changes during
event exploration. P2 mentioned: “The feature is extremely
useful for understanding topic evolution on social media.”

Visualization design. The visualization design received
positive feedback during the interview from the partici-
pants. They all agreed that with the help of DICON and
topic maps, they could easily navigate from high-level infor-
mation (e.g., subevents and topics) to low-level information

(e.g., keywords and users). All the participants accepted the
topic map and wanted to use it in the future. A total of 10 of
the 13 participants particularly liked the interactive lenses.
According to one postgraduate: “The lens tool is just like
real-world lenses. I feel confident in using the tool.”

Suggestion. The participants provided valuable sugges-
tion on how to improve the system. Although P3 liked the
sedimentation visualization to quickly navigate to a typical
subevent, he suggested that the system should also allow
him to group subevents based on the contents of the topics.
P10 mentioned that he wanted to customize the placement
of the properties in DICONs, since sometimes he is only
interested in the sentiment distribution. P11 suggested that
the system should provide automatic refinement of the key-
words on the topic maps, because the duplicated keywords
may lead to certain confusion during exploration process.

8.4 Discussion

The results and user evaluation confirm the effectiveness of
the system in tracking and exploring streaming microblog
messages. Nevertheless, our work has several limitations.

First, StreamExplorer cannot cope with non-English so-
cial streams. Our experiments use only English tweets
from countries where English is the official language to
ensure rigorousness of the experiments. However, relying
on a single language may lead analysts to draw biased
conclusions because of the restricted representativeness of
the message samples. Particularly prone to these issues are
countries such as Nigeria where English is the official but
not the dominant language. Furthermore, if cellphone and
Twitter usage is low, then the data representativeness of
social streams can be questionable. In the future, we plan
to augment StreamExplorer by incorporating NLP toolkits,
such as the Stanford CoreNLP toolkit, to process, track, and
visualize non-English social streams. Other sources, such
as the news media, can also be considered to expand the
coverage of the data.

Second, the performance of the subevent algorithm may
depend on the events and the datasets used. For instance,
the precision of identifying the major Ebola events is low.
The Ebola case lasted a long time and comprised many
events. An inspection of the detected events reveals that
US users were more active in tweeting and discussing
the Ebola outbreak, producing unusually high volumes of
tweets (detected as events by our method), than users from
other countries. Thus, distinguishing the major events from
the other events becomes challenging. Nevertheless, our
method achieves a precision of 96% counting the minor
events and related discussions.

Third, different clusters may be assigned the same labels
because the TFIDF strategy is used to select the labels for
the clusters. Therefore, a label may show up several times.
We can adopt a strategy that is based on LDA to select
the most representative label for a cluster. However, we
select the TFIDF strategy to balance the time performance of
our system and the representativeness of a label because of
the requirement of real-time processing. We provide some
interactive lenses to enable users to efficiently explore the
map and mitigate the confusion caused by duplicate labels.
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9 CONCLUSION

This study introduces a new efficient framework that in-
corporates subevent detection and GPU-accelerated SOM
for efficiently handling evolving social streams. We further
present a multi-level visualization method that integrates
a novel glyph-based timeline visualization, a map visual-
ization, and interactive lenses. On the basis of the frame-
work and visualization method, we design and develop
StreamExplorer, which empowers users to track, explore,
and visualize social streams at different levels on budget
PCs. In the future, we will optimize the performance of the
system. We also plan to add a new set of interactive lenses,
such as the sentiment lens, to the system.
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