
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3078634, IEEE
Transactions on Knowledge and Data Engineering

1

Adversarial Attacks on Multi-Network Mining:
Problem Definition and Fast Solutions∗

Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, Hanghang Tong

Abstract—Multi-sourced networks naturally appear in many application domains, ranging from bioinformatics, social networks,
neuroscience to management. Although state-of-the-art offers rich models and algorithms to find various patterns when input networks
are given, it has largely remained nascent on how vulnerable the mining results are due to the adversarial attacks. In this paper, we
address the problem of attacking multi-network mining through the way of deliberately perturbing the networks to alter the mining
results. The key idea of the proposed method (ADMIRING) is effective and efficient influence functions on the Sylvester equation
defined over the input networks, which plays a central and unifying role in various multi-network mining tasks. The proposed algorithms
bear three main advantages, including (1) effectiveness, being able to accurately quantify the rate of change of the mining results in
response to attacks; (2) efficiency, scaling linearly with more than 100× speed-up over the straightforward implementation without any
quality loss; and (3) generality, being applicable to a variety of multi-network mining tasks ( e.g., graph kernel, network alignment,
cross-network node similarity) with different attacking strategies (e.g., edge/node removal, attribute alteration).

Index Terms—Adversarial attack, Sylvester equation, Multi-network mining.

F

1 INTRODUCTION

Multi-sourced networks naturally appear in many high-
impact application domains, ranging from bioinformatics,
social networks, neuroscience to management. For example,
for protein function prediction, a classic method is to as-
sign similarity to protein pairs by applying graph kernel
over multiple protein networks [1]. Another application
is to leverage the attribute information and/or network
topology to identify unique users across different networks
(i.e., network alignment) [2]. For team management, [3]
proposes to replace the unavailable individual in the team
by recommending the best candidate who maximizes the
similarity of the team networks before and after the re-
placement (i.e., team-context aware similarity). For financial
fraud detection, [4] resorts to interactive subgraph matching
to identify complex fraud schema, e.g., syntheticIDs, money
laundry, etc.

To date, many sophisticated multi-network mining mod-
els and algorithms have been proposed (See Section 5 for
a review). Although these methods are quite effective in
identifying various patterns when the input networks are

∗This paper is an extended version of an earlier paper at IEEE ICDM 2019
with the title of ”ADMIRING: Adversarial Multi-Network Mining”

• Qinghai Zhou and Hanghang Tong are with the Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Email: {qinghai2, htong}@illinois.edu

• Liangyue Li is with Alibaba Group, Hangzhou, China. Email:
liliangyue.lly@alibaba-inc.com

• Nan Cao is with the joint appointment at both College of Design and Inno-
vation and College of Software Engineering, Tongji University, Shanghai,
China. Email: nan.cao@gmail.com

• Lei Ying is with the Electrical Engineering and Computer Science De-
partment of the University of Michigan, Ann Arbor, MI 48109. Email:
leiying@umich.edu

given, less is known on how the mining results would be
affected by the perturbation of the underlying networks,
due to either random noise (i.e., sensitivity analysis) or
malicious attacks (i.e., adversarial learning). For example,
although graph kernel is effective in predicting the function
(i.e., labels) of a protein, it is not clear how sensitive the
prediction result is due to the measurement error for certain
molecule-molecule interactions (i.e., edge error). For team
management, it remains opaque on how the replacement
results might be misled by the falsely claimed skills by
certain users (i.e., manipulation of node attributes). For
financial fraud detection, it is still largely an open question
on how the fraudulent users might intentionally create
some legitimate transactions to bypass the current subgraph
matching based detectors.

In this paper, we address the problem of attacking multi-
network mining to alter its results, which we formulate
as an optimization problem. We propose a family of algo-
rithms (ADMIRING) to achieve effective and efficient attacks.
Figure 1 presents two illustrative examples of adversarial
multi-network mining. The key idea behind our method is
to quantitatively characterize how the mining result will
change if we deliberately perturb the networks, e.g., edit-
ing the network topology by removing edges/nodes or
modifying attributes. To be specific, given the central and
unifying role of the Sylvester equation defined over the
input networks in a variety of multi-network mining tasks
(e.g., graph kernel, network alignment, cross-network node
similarity, etc.) [5], [6], we measure the influence of network
elements (i.e., edge, node and attribute) as the rate of change
of the mining results induced by the underlying Sylvester
equation. We further propose efficient algorithms to speed
up and scale up the computation. We summarize the main
contributions of this paper as follows.

• Problem Formulation. We formally define the adversarial

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 13,2021 at 06:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3078634, IEEE
Transactions on Knowledge and Data Engineering

2

1

4 5

2

1’

2’

3’’

4’’𝒢3

2’’

𝒢2

𝒢1

1’’

4’ 5’

3’

3

Remove 
edge (2, 4)

(a) Attack graph kernel.

21

6 3

2’1’

6’ 3’

𝒢1 𝒢2
45 5’ 4’

rewire

(1,5) to (2,4)

2

1

6

3

4

5

1’

6’

2’

3’

4’

5’

Alignment before attack

2

1

6

3

4

5

1’

6’

2’

4’

5’

Alignment after attack

3’

(b) Attack network alignment.

Fig. 1: Two illustrative examples of adversarial multi-
network mining. (a) Attacking graph kernel: given three
input networks G1, G2 and G3, G1 is much more similar to
G2 than G3. By removing edge (2, 4) in G1, the new network
G′1 becomes more similar to G3 than it is to G2. (b) Attacking
network alignment: given two input networks G1 and G2,
Node-i in G1 is aligned to Node-i′ in G2 (i = 1, ..., 6).
If we attack edge (1, 5) in G1 by rewiring it to (2, 4), the
alignment result between the new network G′1 and G2 will
be completely changed.

multi-network mining problem and formulate it as an
optimization problem. The key idea is to measure the
influence of network elements as the rate of change of
the mining results induced by the underlying Sylvester
equation.

• Algorithms and Analysis. We propose a family of al-
gorithms (ADMIRING) to effectively solve the adversar-
ial multi-network mining problem, which are applicable
to a variety of multi-network mining tasks. We further
propose efficient algorithms to speed up and scale up
computations, with a linear complexity.

• Empirical Evaluations. We perform extensive experimen-
tal evaluations on real-world datasets to test the effi-
cacy of our proposed algorithm in a variety of multi-
network mining tasks. Our evaluations demonstrate that
(1) effectiveness, the algorithms can significantly alter the
similarity between networks, the accuracy of network
classification and that of network alignment; (2) efficiency,
our algorithms are able to scale linearly w.r.t. the input
network size, achieving more than 100× speed-up over
the straightforward implementation without any quality
loss.

The rest of the paper is organized as follows. In Section 2,
we define the problem of adversarial multi-network mining.
Section 3 introduces our proposed algorithms. We present
experimental results in Section 4, and review related work
in Section 5. We conclude the paper in Section 6.

2 PROBLEM DEFINITIONS
In this section, we formally define adversarial multi-
network mining problem, after we introduce notations and
preliminaries on multi-network mining as well as influence
function.

2.1 Notations

Table 1 summarizes the main symbols and notations used
in this paper. We use bold uppercase letters for matrices
(e.g., A), bold lowercase letters for vectors (e.g., q) and
lowercase letters for scalars (e.g., c). For matrix indexing,

we use A (i, j) to represent the entry at the ith row and the
jth column of matrix A, A (i, :) to denote the ith row of A
and A (:, j) to denote the jth column of A.

In this paper, we focus on a pair of node attributed net-
works, represented as G1 = {A1,N1} and G2 = {A2,N2},
where At (t= 1, 2) represents the adjacency matrices of the
input networks. Nj

t = diag(Nt(:, j))(t = 1, 2 and j =
1, . . . , d) represents the strength of all nodes having the jth

attribute in network Gt. The uppercase bold letter N× is
the combined node attribute matrix of the two networks
N× =

∑d
j=1 N

j
1 ⊗ Nj

2. For simplicity, we assume the
input networks are (a) unweighted, (b) undirected and (c)
of the same size. The generalization of the proposed method
to weighted and/or directed networks of different sizes is
straightforward.

Symbols Definitions
G = {A,N} an attributed network

A adjacency matrix
A× Kronecker product of A1 and A2

Nl diagonal matrix of the lth node attribute
N× combined node attribute matrix
A−1 inverse of matrix A
A′ transpose of matrix A

Si,j single entry matrix Si,j(i, j) = 1 and zeros
elsewhere

I an identity matrix
c a regularization parameter, 0 < c < 1
α damping factor, 0 < α < 1

p×,q×
initial and stopping probability
distribution

n,m number of nodes and edges, respectively
d dimension of node attribute vector
I (g) influence function of network element g
⊗ Kronecker product

a = vec(A) vectorize a matrix A in column order

X = mat(x, n, n)
reshape x to an n× n matrix in column
order

Y = diag(y) diagonalize a vector y

TABLE 1: Symbols and Definition

2.2 Preliminaries
We briefly review (1) Sylvester equation for multi-network
mining tasks, and (2) influence function for machine learn-
ing.
A – Sylvester equation for multi-network mining. A unifying
cornerstone behind many multi-network mining tasks can
be attributed to the Sylvester equation defined over the in-
put networks. In detail, given two node-attributed networks
G1 and G2, we have the following generalized Sylvester
equation,

X =
d∑

l=1

cMlXT′l + B (1)

where c is a regularization parameter, Ml = Nl
2A2,Tl =

Nl
1A1, and B ∈ Rn×n encodes the prior knowledge of

the mining tasks. For instance, in network alignment [6],
B is the preference matrix to encode anchor links; and
in random walk graph kernel [7], B represents the initial
probability distribution of the random walks on the direct
product matrix. In Eq. (1), X ∈ Rn×n is the solution matrix.
A numerical solution of the Sylvester equation usually costs
at least O(n3) in time complexity [8], and some recent
works [9], [10] are able to reduce the time complexity to
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be linear w.r.t. the input network size. By the Kronecker
product properties, we have the following equivalent linear
equation of Eq. (1),

x = cN×A×x + b (2)

where x = vec(X), b = vec(B) and A× = A1 ⊗
A2. The closed-form solution of x is given by x =
(I− cN×A×)

−1
b.

Remarks. For clarity of the description of the proposed algo-
rithms and analysis, we will mainly focus on a pair of node-
attributed networks. Nonetheless, the proposed algorithms
can be naturally generalized to handle other scenarios. For
example, both Eq. (1) and Eq. (2) can be generalized to
handle edge attributes as well [6], [10]. If the node and
edge attribute information is absent, Eq. (1) degenerates
to X = cA2XA′1 + B. If there are multiple (more than
two) input networks, we can organize them into a combined
network by matrix direct sum G = {A,N}, where A and
N are block diagonal matrices and each diagonal block
represents one input network. Then Eq. (1) is defined w.r.t.
the combined network G (i.e., G = G1

⊕
G2).

It turns out the solution matrix X and its vectorization
x encodes rich information of the input networks, and
therefore have been used for a variety of mining tasks.
For example, the random walk based graph kernel [7] is
essentially a summation of all the entries of X linearly
weighted by the stopping probability distribution q′× of
random walks on the direct product matrix; the solution
matrix X indicates the soft node-alignment between the
input networks and the specific entries indicates the sim-
ilarity or proximity between two nodes across networks
(i.e., cross-network node proximity) [6]; the solution matrix
X defined over a query network and a data network can
be further fed into a goodness function [4] for subgraph
matching. Conceptually, we can represent all the above
multi-network mining results induced by the solution ma-
trix X by a function f . For example, f(X) = q′×vec(X)
for random walk graph kernel [5]; f(X) = X for (soft)
network alignment [6]; f(X) = X(s, t) for cross-network
node similarity search; and f(X) = argmaxM g(M,X) =
−‖MAM′ − Aq‖2F + a · trace(XM′) − b · ‖MM′ − I‖2F
for subgraph matching, where M is the matching indicator
matrix, A is the adjacency matrix of the data network, a and
b are additional parameters [4]. Table 2 presents a summary
for different choices of f(·) for multi-network mining tasks.

B – Influence function for machine learning. Influence func-
tion is a powerful analytical tool from robust statistics to
evaluate the dependence of the estimator on the value of
the data points [11]. The seminal work by Pang et al. [12]
proposes to leverage influence function to assess the effect
of each training example on the performance of the machine
learning system, as a key step towards explainable machine
learning. Its key idea is to trace the learning model’s pre-
dictions back to the input training examples. In order to
identify the training examples that are most responsible to
model’s behavior, they use influence function in accordance
with the model that reflects how the learning model’s pa-
rameters are affected if a training example is perturbed by
an imperceptible amount.

2.3 Problem Definition
Generally speaking, adversarial learning aims to maximally
alter the learning results by manipulating a small number of
the input data points. In the case of multi-network mining,
it translates to a small number of network elements (e.g.,
edges/nodes/attributes). Given the unifying role of the so-
lution matrix X of Eq. (1), we formally define the adversarial
multi-network mining problem as follows,

Problem 1. Adversarial Multi-network Mining
Given: (1) two input attributed networks G1 and G2, (2) the

vectorization of the solution matrix X of Eq. (1), (3) a
function f(X) in Table 2 underlying the correspond-
ing mining task, (4) an integer budget k, and (5) the
specific network element type (i.e., edge vs. node vs.
attribute);

Find: a set of k most influential network elements of the
specified type so that f(X) will change most if we
attack (e.g., remove or alter) those elements.

Multi-network Mining Tasks Function f(·)

Random walk graph kernel [5] f(X) = q′×vec(X)

Soft network alignment [6] f(X) = X or f(X) = vec(X)

Cross-network node
similarity [6] f(X) = X(s, t)

Subgraph matching [4] f(X) = argmaxM g(M,X)

TABLE 2: Choices of functions f(·) w.r.t. the solution X of
Sylvester Equation underlying various multi-network min-
ing tasks. In cross-network node similarity, the similarity
between node s in G2 and node t in G1 is X(s, t).
3 ALGORITHMS AND ANALYSIS
In this section, we first formally formulate Problem 1 from
the optimization perspective. Next, we derive the influ-
ence functions with respect to various network elements
(e.g., edges, nodes and attributes) for multi-network mining
tasks. Based on that, we propose effective and efficient
algorithms which leverage such influence functions to attack
multi-network mining results, together with some analysis.

3.1 ADMIRING Formulation
The intuition behind adversarial multi-network mining is
to find a set of key network elements (e.g., edges, nodes,
attributes) whose perturbation (e.g., removal, alteration)
would cause the largest change of the function f (·) under-
lying a given mining task. For example, for random walk
graph kernel, the goal of an adversarial attack is to sig-
nificantly change the similarity (i.e., graph kernel) between
two input networks by deliberately perturbing a small set
of influential network elements. For network alignment,
we want to maximally alter the alignment vector x and
for cross-network node similarity, we aim to considerably
change the similarity between two nodes across input net-
works. To be specific, let X be the original solution of Eq. (1)
for the input networks G1, G2 and XP be the new solution
matrix for networks G1P and G2 after we perturb the net-
work elements in set P . The corresponding mining results
are f(X) and f(XP), respectively. We formally formulate
Problem 1 as the following optimization problem,

argmax
P

∆f = (f (X)− f (XP))
2

s.t. |P| = k (3)
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Note that for network alignment, the squared loss in the
above formulation will be replaced by the squared L2

norm if f(X) = vec(X) or the squared Frobenius norm
if f(X) = X. In order to solve the above optimization
problem, there are two crucial questions that need to be
answered: (Q1) how to quantitatively evaluate the influence
of a specific network element w.r.t. the function f(·) over
the solution X of the Sylvester equation; and (Q2) how to
leverage the influence function to identify a set of network
elements to attack various multi-network mining tasks. In
the next two subsections, we present our solutions to Q1
and Q2 according to the specific type of network elements
(i.e., edges, nodes and attributes), respectively.

3.2 Network Element Influence

In order to achieve effective attacks to multi-network mining
tasks, it is desirable that the change to the network structure
would significantly impact the mining results (i.e., f(X)
in Table 2). For simplicity, we only consider three types of
attacks, including edge removal, node removal and node at-
tribute alteration. For clarity of the presentation, we assume
the attack always happens on the first network G1. In order
to quantify how f(X) changes (i.e., ∆f in Eq. (3)) if we
perturb a specific network element, we propose to use the
influence function w.r.t. the corresponding multi-network
mining tasks.
Definition 1. Edge Influence in Multi-network Mining. For a
given multi-network mining task f(X), the influence of a
specific edge (e.g., A1 (i, j) in G1) w.r.t. the mining result is
defined as the derivative of f(X) w.r.t. this edge. Formally,
the edge influence is defined as I (A1 (i, j)) = ∂f(X)

∂A1(i,j) .

Definition 2. Node Influence in Multi-network Mining.
The node influence is defined as the summation of
influences of the incident edges, i.e., I (N1 (i)) =∑

j|A1(i,j)=1 I (A1 (i, j))

Definition 3. Node Attribute Influence in Multi-network Min-
ing. For node-attributed networks, the influence of the lth

attribute of node i (i.e., Nl
1(i, i)) in network G1 is defined as

the derivate of f(X) w.r.t. this specific node attribute, i.e.,
I(Nl

1(i, i)) = ∂f(X)

∂Nl
1(i,i)

.

Next, we present details on how to compute the influ-
ence of network elements (e.g., edges, nodes and attributes)
w.r.t. the mining results in the various tasks (e.g., random
walk graph kernel, network alignment and cross-network
node similarity in Table 2). For clarity, we will mainly use
random walk graph kernel as an example to illustrate the
mathematical details to compute different network element
influences, followed by the discussion on how the compu-
tation would differ for other multi-network mining tasks.
A – Edge influence. We first give Lemma 1 to compute the
edge influence for random walk graph kernel.

Lemma 1. (Edge Influence for Random Walk Graph Kernel.)
Given random walk graph kernel between two input net-
works: f(X) = q′× (I− cN×A×)

−1
N×p×, the influence of

a specific edge (e.g., A1(i, j) in G1) w.r.t. random walk graph
kernel can be calculated as follows,

I (A1 (i, j)) = cq×
′QN×[(Si,j + Sj,i)⊗A2]QN×p× (4)

where Q = (I− cN×A×)
−1, Si,j is a single-entry matrix

of the same size as A1, with 1 at the (i, j)th position and 0
elsewhere.

Proof. According to [5], the random walk graph kernel for
node-attributed networks is,

f(X) = q′×vec(X) = q′× (I− cN×A×)
−1

N×p× (5)

where vec(X) = (I− cN×A×)
−1

N×p× = x.
Following Definition 1, we take the partial derivative of

f(X) w.r.t. a specific edge (e.g., A1 (i, j) in network G1),

I(A1(i, j)) =
∂f (X)

∂A1 (i, j)
=
∂f(X)

∂x

∂x

∂A1(i, j)
(6)

According to the first row of Table 2, we have that
∂f(X)
∂x = q′×. For the second partial derivative (i.e., ∂x

∂A1(i,j) ),
by taking the derivative of Eq. (2), we have that

∂x

∂A1(i, j)
= cN×

∂A×
∂A1(i, j)

x + cN×A×
∂x

∂A1(i, j)
(7)

From Eq. (7), we then have that
∂x

∂A1(i, j)
= c (I− cN×A×)

−1
N×

∂A×
∂A1(i, j)

x (8)

By the property of the matrix derivative [13, Page 8], we
further have that

∂A×
∂A1(i, j)

=
∂A1

∂A1(i, j)
⊗A2 =

(
Si,j + Sj,i

)
⊗A2 (9)

Recall the closed-form solution x =
(I− cN×A×)

−1
N×p×. Putting everything together,

we obtain the solution for calculating the influence of edge
A1 (i, j) w.r.t. random walk graph kernel as follows,

I (A1 (i, j)) = cq×
′QN×[(Si,j + Sj,i)⊗A2]QN×p×

which completes the proof.

B – Node influence. Based on the edge influence (Eq. (4)), it
is straight-forward to compute the node influence, which is
summarized in the following proposition.

Proposition 1. (Node Influence in Random Walk Graph
Kernel.) Given random walk graph kernel between two
input networks: f(X) = q′× (I− cN×A×)

−1
N×p×, the

influence of a specific node (e.g., N1(i) in G1) w.r.t. random
walk graph kernel can be calculated as,

I (N1 (i)) = cq×
′QN×[

∑
j|A1(i,j)=1

(Si,j+Sj,i)⊗A2]QN×p×

(10)

Proof. It directly follows Lemma 1. Omitted for brevity.

C – Node attribute influence. Finally, we give Lemma 2 to
compute the node attribute influence.

Lemma 2. (Node Attribute Influence for Random Walk
Graph Kernel.) Given random walk graph kernel between
two input networks: f(X) = q′× (I− cN×A×)

−1
N×p×,

the influence of a specific node attribute (e.g., the lth di-
mension of the attribute vector of node N1(i) in G1, i.e.,
Nl

1(i, i)) w.r.t. random walk graph kernel can be calculated
as follows,

I
(
Nl

1(i, i)
)

= q′×Q[Si,i ⊗Nl
2] (I + cA×QN×)p× (11)

where Q = (I− cN×A×)
−1, Si,i is a single-entry matrix

of the same size as A1, with 1 at the (i, i)th position and

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 13,2021 at 06:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3078634, IEEE
Transactions on Knowledge and Data Engineering

5

0 elsewhere. Nl
2 represents the strength of all the nodes

having the lth attribute from the network G2.

Proof. Recall that N× =
∑d

j=1 N
j
1 ⊗ Nj

2 is the combined
node attribute matrix. According to Definition 3, we restrict
the node attribute influence to be the l-th (1 6 l 6 d)
attribute of node i in G1, i.e., Nl

1(i, i). Following a similar
derivation as the edge influence, we can compute the node
attribute influence as

I
(
Nl

1(i, i)
)

=
∂f(X)

∂Nl
1(i, i)

=
∂f(X)

∂x

∂x

∂Nl
1(i, i)

(12)

To calculate the second derivative of Eq. (12), we take the
derivative of Eq. (2) on both sides w.r.t Nl

1(i, i), where b =
N×p×. We have that

∂x

∂Nl
1(i, i)

= c
∂N×

∂Nl
1(i, i)

A×x + cN×A×
∂x

∂Nl
1(i, i)

+
∂N×

∂Nl
1(i, i)

p×

⇔ ∂x

∂Nl
1(i, i)

= (I− cN×A×)
−1 ∂N×

∂Nl
1(i, i)

(cA×x + p×)

where x = (I− cN×A×)
−1

N×p×.
Since N× =

∑d
j=1 N

j
1 ⊗ Nj

2, by the property of the
derivative of matrix [13, Page 8], we have that

∂N×
∂Nl

1(i, i)
=

∂Nl
1

∂Nl
1(i, i)

⊗Nl
2 = Si,i ⊗Nl

2

Putting everything together, we have the closed-form
solution I

(
Nl

1(i, i)
)

as follows,

I
(
Nl

1(i, i)
)

= q′×Q[Si,i ⊗Nl
2] (I + cA×QN×)p×

which completes the proof.

D – Influence functions for other mining tasks. Lemma 1,
Proposition 1 and Lemma 2 provide accurate ways to
compute edge, node and attribute influence for random
walk graph kernel, respectively. We can use a very similar
procedure to compute influence for other multi-network
mining tasks in Table 2. Let us take edge influence as an
example, since node influence directly follows the edge
influence and attribute influence can be computed in a
similar way as the edge influence. For network alignment,
since f(X) = vec(X) = x, we take the partial derivative
of the squared L2 norm of x w.r.t. A1(i, j), i.e., ∂‖x‖22

∂A1(i,j) as
the influence of a given edge A1(i, j). Likewise, for the
cross-network node similarity between node-s in G1 and
node-t in G2, the influence of a given edge A(i, j) is the
((s − 1)n + t)thentry of ∂x

A1(i,j) in Eq. (8). For subgraph
matching, it involves another level of optimization over
the matching indicator matrix M which is non-differential
due to the binary constraint. Nonetheless, it is reasonable
to expect the matching indicator matrix M to be highly
dependent on a few top-ranked entries in the solution vector
x. This suggests to adopt the ordered weighted L1 norm
(OWL) [14] of ∂x

A1(i,j) in Eq. (8) as the influence of a given
edge A1(i, j).

3.3 Proposed Algorithms

A – A generic algorithm for adversarial multi-network
mining. Based on Lemma 1, 2 and proposition 1, we pro-
pose Algorithm 1 to identify the most influential network
elements (i.e., edges, nodes, attributes) for random walk

graph kernel. Note that Algorithm 1 provides a family of
attacking algorithms based on the specific network element.
We use different suffix to differentiate different attacking
scenarios, i.e., ADMIRING-E, ADMIRING-N, ADMIRING-A
for attacking edges, nodes and node attributes respectively.
The proposed algorithms for other tasks in Table 2 follow
the same procedure as Algorithm 1 except for the specific
ways for computing influence functions as outlined in the
previous subsection.

The key idea of the proposed ADMIRING algorithm
is that we iteratively attack one network element with
the highest influence value (Step-5, Step-9, Step-16), re-
move or alter it from the network (Step-6, Step-10, Step-
17) and recompute the influence functions for the remain-
ing network elements. In Algorithm 1, the two column
vectors p× and q× are set as uniform unit vectors, i.e.,
p× = q× = 1 × 1

n2 , and c is chosen as a small positive
number to ensure convergence of the Sylvester Eq. (1) with
fixed-point methods (e.g., c = 1/(max(eigenvalue(N1A1))×
max(eigenvalue(N2A2)) + 1)).

Algorithm 1 ADMIRING: Adversarial Multi-network Mining

Input: (1) Two attributed networks G1 and G2, (2) an integer
budget k , (3) a mining task denoted by f(·) in Table 2,
(4) network element type (i.e., edge vs node vs node
attribute), (5) q×, p×, and (6) parameter c;

Output: A set of k network elements P to attack, and the
residual network G1P .

1: Initialize P = ∅;
2: while |P|< k do
3: if element type is edge then
4: Calculate influence for all edges using Eq. (4)
5: Add edge (i, j) = argmax

(i,j)

I (A1 (i, j)) to P ;

6: Remove edge (i, j) and (j, i) from G1;
7: else if element type is node then
8: Calculate influence for all nodes in G1 using

Eq. (10);
9: Add node i = argmax

i
I (N (i)) to P ;

10: Remove node i from G1;
11: else if element type is node attribute then
12: Set the value of damping factor α ∈ (0, 1);
13: for node i in G1 do
14: Calculate influence of each attribute using

Eq. (11);
15: end for
16: Add node attribute Nl

1(i, i) =
argmax
Nl

1(i,i)

I
(
Nl

1(i, i)
)

to P ;

17: Reduce the selected attribute by a ratio α in G1;
18: else
19: return Error
20: end if
21: end while
22: return P and G1P .

B – Speed-up and Scale-up. The main computational bot-
tleneck of Algorithm 1 is that in each iteration we need
to (re-)compute the influence for each existing network
element. For example, with fixed-point methods to solve
Eq. (1), the time complexity of Algorithm 1 is at least
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O(k(m2 + n2 + mn)) and its space complexity is at least
O(m2 + n2). )

In order to address this issue, we propose a fast and exact
solution to speed up the computation of influence function.
Again, we take edge influence as an example, since the node
influence directly follows the edge influence, and we can
develop a very similar fast algorithm for attribute influence.

Our proposed fast solution is based on two key ideas.
First, we observe that there are lots of overlaps in terms of
computing the influence of different edges. That is, q′×QN×
term and QN×p× term in Eq. (4) are the same for different
edges, and each of these two terms correspond to the
solution vector of Eq. (2) with different bias vector b respec-
tively. Second, some recent progress suggests that Sylvester
equation in Eq. (1) can be solved in linear time without
quality loss [10], as shown in the following proposition:

Proposition 2. (Kronecker Krylov subspace based Sylvester
equation solver.) By implicit Kronecker Krylov subspace
method [10], Eq. (1) can be solved in O(m) time, where m is
the number of edges in input networks, and its solution ma-
trix X can be represented in low-rank form, i.e., X = UV′

where U,V ∈ Rn×r are two low-rank matrices.
Based on Proposition 2, we propose ADMIRING-E-Fast

to speedup the computation of edge influence in Algo-
rithm 2. In Step-1, since q× is a unit vector, we can reshape
it into rank-1 matrix, i.e., Q× = 1

n21n×111×n. We solve
two Sylvester equations in Step-2 and Step-3 by Kronecker
Krylov subspace method and save low-rank representations
of the solution matrices, respectively. Then, the influence of
all edges can be computed by Step-8.

Algorithm 2 ADMIRING-E-Fast

Input: (1) Two attributed networks G1 and G2, (2) q×, p×,
and (3) the parameter c;

Output: Influence of all edges in G1;
1: Reshape P̃× = mat(N×p×, n, n), Q× = mat(q×, n, n)
2: Solve the linear system X =

∑d
l=1 cN

l
2A2X(Nl

1A1)′ +
P̃× and save its implicit representation X = U1V

′
1,

where U1,V1 ∈ Rn×r ;
3: Solve the linear system X̃ =

∑d
l=1 cA2N

l
2X̃(A1N

l
1)′ +

Q× and save its implicit representation X̃ = FG′ =
[f1 f2 . . . fr′ ][g1 g2 . . .gr′ ]

′, where fi,gi(i = 1, . . . , r′) ∈
Rn×1 are the ith column of F and G, respectively;

4: Vectorize X̃ as vec(X̃) =
∑r′

i=1 gi ⊗ fi;
5: Represent Y = mat(N×vec(X̃), n, n) as U2V

′
2,

where U2 = [f̃1,1 f̃1,2 . . . f̃d,r′−1 f̃d,r′ ],V2 =

[g̃1,1 g̃1,2 . . . g̃d,r′−1g̃d,r′ ], f̃i,j = Nj
2fi and g̃i,j = Nj

1gi

for i = 1, . . . , r′ and j = 1, . . . , d.
6: Compute and save P = U′2A2U1;
7: for edge(i, j) in G1 do
8: Calculate the influence as,
I(A1(i, j)) = V2(i, :)PV′1(:, j) + V2(j, :)PV′1(:, i);

9: end for
10: return Influences of all edges in G1;

We give the following Theorem, which states that the
edge influences computed by the proposed ADMIRING-E-
Fast is exactly the same as those computed by Eq. (4).

Theorem 1. (Correctness of ADMIRING-E-Fast.) Given two
input networks, G1 and G2, the influence of edges in G1 to
random walk graph kernel computed from ADMIRING-E-
Fast is the same as it is calculated by Eq. (4).

Proof. Recall that the influence of edge (i, j) in G1 to random
walk graph kernel is computed as,

I (A1 (i, j)) = cq×
′QN×[(Si,j + Sj,i)⊗A2]QN×p×

We denote x = QN×p×, X = mat(x, n, n), y =
[q′×QN×]

′
= N×Q

′q× and Y = mat(y, n, n). We have,

N×p× = [
d∑

i=1

Ni
1 ⊗Ni

2] · [p1 ⊗ p2]

=
d∑

i=1

[Ni
1 · p1]⊗ [Ni

2 · p2] =
d∑
i

p̃1,i ⊗ p̃2,i

where p̃1,i = Ni
1 · p1 and p̃2,i = Ni

2 · p2 (i = 1, . . . , d). We
then reshape N×p× as,

P̃× = mat(N×p×, n, n) =
[
p̃2,1 . . . p̃2,d

] p̃
′
1,1
...

p̃′1,d


and P̃× is in low-rank. Therefore, based on Proposition 2,
by solving the linear system at Step-2 in Algorithm 2,
we have an implicit representation of X = U1V1, where
U1,V1 ∈ Rn×r.

We solve the linear system in Step-3 for an implicit
representation for X̃ = mat(Q′q×, n, n) = FG′, where
F,G ∈ Rn×r′ because Q× = mat(q×, n, n) is a rank-1
matrix. By vectorizing X̃, we get vec(X̃) =

∑r′

j=1 gj ⊗ fj ,
where gj , fj are the jth column of G and F, respectively.
We further have,

N×vec(X̃) = [
d∑

i=1

Ni
1 ⊗Ni

2][
r′∑

j=1

gj ⊗ fj ]

=
d∑

i=1

r′∑
j=1

(Ni
1gj)⊗ (Ni

2fj) =
d∑

i=1

r′∑
j=1

g̃i,j ⊗ f̃i,j

where g̃i,j = Ni
1gj and f̃i,j = Ni

2fj . After reshaping, we get

Y = mat(N×vec(X̃), n, n) =

U2∈Rn×r′d︷ ︸︸ ︷[
f̃1,1 f̃1,2 . . . f̃d,r′

] 
g̃′1,1
g̃′1,2

...
g̃′d,r′


︸ ︷︷ ︸

V′2∈Rr′d×n

Then Eq. (4) can be re-written as,

I (A1(i, j)) = c·(vec(U2V
′
2))′[(Si,j+Sj,i)⊗A2]vec(U1V

′
1)

Since (Si,j + Sj,i) ⊗ A2 is a sparse matrix with A2 at its
(i, j)th and (j, i)th position if it is represented as a block
matrix, the computation of the influence of edge (i, j) can
be further simplified as,

I(A1(i, j)) = cV2(i, :)PV′1(:, j) + cV2(j, :)PV′1(:, i)

where P = U′2A2U1 and we only compute P for once.
This completes the proof.

With ADMIRING-E-Fast, we can reduce the complexity
of ADMIRING-E to be linear with the numbers of edges and
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nodes in networks (i.e., m, n respectively) in both time and
space, which is summarized in Lemma 4.

Lemma 3. (Time and space complexity of ADMIRING-
E, ADMIRING-N and ADMIRING-A). The time and space
complexity of ADMIRING-E are O(k(m2 + n2 + mn)) and
O(n2 + m), respectively. The time and space complexity of
ADMIRING-N are O(k(m2 + n2 + dmaxmn+ dmaxn

2)) and
O(n2+m2) (dmax is the largest node degree in the network),
respectively. The time and space complexity of ADMIRING-
A are O(k(m2 + n2 + dn2)) and O(n2 +m2), respectively.

Proof. a – In ADMIRING-E, for each of k iterations, we need
to first compute two vectors, q×′QN× and QN×p× each
with O(m2 + n2) time complexity as mentioned in Subsec-
tion 3.2. With the two vectors computed, the complexity to
calculate influence w.r.t. one specific edge is O(m + n) be-
cause of the sparse structure of Si,j⊗A2 with onlyO(m) ele-
ments in it. Therefore, to compute the influences of all edges
in one network costs O(m(m+n)) = O(m2 +mn). Overall,
the time complexity of ADMIRING-E is O(k(m2 +n2 +mn))
and O(m2 +n2) space is required to save the n2× 1 vectors
and the kronecker product of two adjacency matrices of
O(m2) edges.

I (A1 (i, j)) =

O(m+n)with two vectors pre-computed︷ ︸︸ ︷
cq×

′QN×︸ ︷︷ ︸
O(m2+n2)

[(Si,j + Sj,i)⊗A2] QN×p×︸ ︷︷ ︸
O(m2+n2)

b – For ADMIRING-N, by firstly computing the two
vectors (O(m2 + n2)), q×

′QN× and QN×p×, the time
complexity to calculate influences of all nodes costs
O(n(dmaxm+ dmaxn)) since there are O(dmaxm) entries in∑

j|A1(i,j)=1(Si,j+Sj,i)⊗A2. Therefore, the time complexity
of ADMIRING-N is O(k(m2 +n2 +dmaxmn+dmaxn

2)) and
the space complexity is O(m2 + n2).
c - In ADMIRING-A, it costsO(m2+n2) to compute two vec-
tors, q′×Q and (I + cA×QN×)p×, and O(nd(n)) to itera-
tively calculate influence of all node attributes (Si,i⊗Nl

2 has
O(n) elements). Therefore, we can get the time and space
complexity of ADMIRING-A, which are O(k(m2 +n2 +dn2))
and O(n2 +m2), respectively.

Lemma 4. (Complexity of ADMIRING-E-Fast.) The time
complexity of ADMIRING-E-Fast is O(kdrr′(m+n)) and the
space complexity is O(m + nr + nr′d) where n, m are the
number of nodes and edges of the network respectively, r is
the dimension of the low-rank matrices U1 and U2, r′ is the
dimension of the implicit representation matrices, F and G
in Algorithm 2, k is the size of P as mentioned in ADMIRING
formulation, and d is the dimension of node attribute vector.

Proof. In ADMIRING-E-Fast, for each one of k iterations,
it first takes O(m) time to get the implicit representation
of X = U1V

′
1 and Y = U2V

′
2. Then we first com-

pute P = U′2A2U1, since there are m edges in A2, we
need O(mr′d) time to compute U′2A2; it takes another
O(nrr′d) to compute the matrix multiplication of the pre-
vious result and U1. After we have P, for every edge in
A1, we need O(drr′) time to compute the influence for
this specific edge. By adding them together and ignore
the low-order terms, the final time complexity of ADMIR-
ING-E-Fast is O(kdrr′(m + n)). The space we need to

save U1,V1 ∈ Rn×r,U2,V2 ∈ Rn×r′d, P ∈ Rr′d×r and
A2 are O(nr), O(nr′d), O(drr′) and O(m), respectively.
Therefore the space complexity for ADMIRING-E-Fast is
O(m+ nr + nr′d).

4 EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the pro-
posed algorithms in terms of the following two questions:
• Effectiveness. How effective are the proposed algorithms

in identifying key network elements to attack multi-
network mining tasks?

• Efficiency. How scalable and efficient are the proposed
ADMIRING algorithms?

4.1 Experimental Setup

Dataset Class Avg.
#nodes

Avg.
#edges

At-
tribute

MUTAGENICITY 2 30.32 19.79 0
ENZYMES 6 32.63 62.14 18
PROTEINS 2 39.06 72.82 1

DHFR 2 42.43 44.54 3
REDDIT-BINARY 2 429.63 197.75 0

IMDB-BINARY 2 19.77 96.53 0
IMDB-MULTI 3 13 65.94 0

COLLAB 3 74.49 2,457.78 0
ACM Citation - 9,872 79,122 17
DBLP Citation - 9,916 89,616 17

TABLE 3: Statistics of datasets. The ‘Class’ column is the
number of network labels, and ‘-’ means such labels are
unavailable. ‘0’ in the ‘Attribute’ column means the corre-
sponding networks do not have node attributes.

A – Datasets. We use ten real-world datasets, which are
publicly available. Table 3 summarizes the statistics of these
datasets. The first four datasets are bioinformatics networks,
and the remaining six are social and collaboration networks.
The detailed descriptions of these datasets are as follows.
• MUTAGENICITY is a dataset of 4,337 networks of molec-

ular structures and it is divided into two classes mutagen
(2,401 networks) and nonmutagen (1,936 networks) accord-
ing to whether they have a property of mutagenicity [15].

• PROTEINS is a dataset of 1,113 protein structures [1].
Each protein is represented by a network. The task is
to classify the protein structures into enzymes vs. non-
enzymes.

• ENZYMES is a dataset of protein tertiary structures con-
sisting of 600 enzymes [1]. This dataset includes 100 pro-
tein structures from each of the 6 enzyme classes and the
goal is to correctly predict enzyme class for these proteins.

• DHFR is a dataset of 756 networks of inhibitors of di-
hydrofolate reductase and it is divided into two classes.
The goal is to predict the correct class for each network
structure [16].

• REDDIT-BINARY is a dataset where each network cor-
responds to an online discussion thread. The task is to
identify whether a network belongs to a question/answer-
based community or a discussion-based community [17].

• COLLAB is a scientific collaboration dataset from 3 public
collaboration datasets [18] and the task is to determine
whether the ego-network of a researcher belongs to High
Energy, Condensed Matter or Astro Physics field.
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• IMDB-BINARY is a movie collaboration dataset which
collects cast and genre information of two types of movies,
romance and action on IMDB. For each network, nodes
represent actors/actresses and there is an edge between
them if they appear in the same movie, and the task is to
predict the genre of the movie the network represents [17].

• IMDB-MULTI is multi-class version of IMDB-BINARY
and contains a balanced set of ego-networks derived from
Comedy, Romance and Sci-Fi genres [17].

• ACM/DBLP are two co-authorship networks and are used
for evaluating network alignment tasks. Nodes represent
authors and there is an edge between two authors if
they have published a paper together. Node attributes
represents the areas of research the authors are working
on [6].

B – Evaluation Metrics. We quantify the effectiveness of
the proposed algorithms by measuring the following two
aspects, including (1) the relative change of f(·) function
(i.e., ∆f

f ), and (2) the accuracy of a multi-network mining
task (e.g., network classification, network alignment) before
and after performing adversarial attacks.

We perform the evaluations on two multi-network min-
ing tasks, including random walk graph kernel and network
alignment. For the former, (1) on each selected dataset, we
randomly selected 100 pairs of networks of the same class,
then for every pair of networks, we apply ADMIRING or
comparison methods to attack one of them, and re-compute
the graph kernel to compare the relative change; (2) we
also trained an SVM classifier with graph kernel for each
of the three datasets, MUTAGENICITY, IMDB-BINARY and
PROTEINS, respectively; for every network (i.e., G1) in the
testing set, we attacked it with ADMIRING or comparison
methods to reduce its similarity with one random training
network (i.e., G2) . The new classification result is from
applying the trained SVM classifier on the attacked test
networks. We report the average classification accuracy by
repeating the above attacking strategy for 10 times. For the
latter (network alignment), we first randomly sample 20
pairs of subgraphs from ACM, of which the size uniformly
varies from 100 nodes to 2,000 nodes. The sampling re-
sults form ACM-ACM pairs (i.e., ACM-ACM). Similarly, we
generate 20 DBLP-DBLP subgraph pairs (i.e., DBLP-DBLP)
from DBLP and ACM-DBLP subgraph pairs (i.e., ACM-
DBLP) from ACM and DBLP, respectively. Then we apply
ADMIRING or baseline methods to every pair of subgraphs
and report the average cross-network alignment accuracy
before and after the attack.
C – Comparison Methods. We evaluate the proposed AD-
MIRING method with different attacking strategies, i.e., AD-
MIRING-E, ADMIRING-N, ADMIRING-A for attacking edges,
nodes and node attributes respectively. We also evaluate a
batch-mode variant of ADMIRING. That is, in Algorithm 1,
instead of selecting one network element at each iteration,
we select the top-k elements with the highest influence
scores in one iteration. We use a suffix ‘v’ to denote such a
variant. If the proposed fast algorithm (Algorithm 2) is used
to compute the influence score, we add another suffix ‘fast’.
For example, ADMIRING-N-v means attacking networks by
nodes in the batch mode; ADMIRING-E-fast means attacking
networks by edges using fast solution in Algorithm 2, etc.

For comparison, we use the following methods to select the
top-k influential network elements, including,
(1) Random, which randomly selects k network elements in
the first network to attack and for a specific type of network
elements, we randomly select k elements and perturb (re-
move or alter) the selected network elements from G1.
(2) Bruteforce, which re-computes f after attacking each
element and selects the one with the highest ∆f in each
iteration. At each of the k iterations, we calculate the change
of mining results, i.e., ∆f , by iterating through all the
network elments of the specified type and add the element
which causes the largest change of f(X) to P ;
(3) Bruteforce-v, which uses Bruteforce in the batch mode.
At the beginning, we compute ∆f by iterating through all
network elements of the specified type, and add the network
elements with the top-k largest ∆f to P .
(4) Q-Matrix, which selects the top-k network elements
based on Q = (I− cN×A×)

−1. Recall that Q =
(I− cN×A×)

−1 is an n2 × n2 matrix and we can use a
block-matrix representation (i.e., Q = [Wij ]i,j=1,...,n, where
Wij is at the (i, j)th position of Q with size n× n). In edge
attack, the aggregation of the entries in block matrix Wij

can be considered as the contribution of the edge A1(i, j) to
the mining result (i.e., f(X)), then we compute the influence
of edge A1(i, j) by the aggregation of the entries in Wij

and select the top-k edges. In node attack, we calculate
the influence of node i in G1 by summing up all blocks
Wij |A1(i,j)=1 and select the top-k nodes. While in node
attribute attack, we compute the influence of Nl

1(i, i) as∑n
j=1 W

ij(l, :) and select the top-k attributes.
(5) PageRank which measures the importance of nodes in a
given network [19] and here we select top-k network ele-
ments based on PageRank ranking results. In G1, we define
the PageRank value of an edge A1(i, j) (i.e., v(A1(i, j)) as
follows,

v(A1(i, j)) = (r(i) + r(j))× max
m∈{i,j}

r(m)

where r(i) is the PageRank value of node i in G1. In ADMIR-
ING-E, we choose the top k edges with the highest PageRank
edge values; in ADMIRING-N, we select the k nodes in G1

with the largest PageRank values; and in ADMIRING-A, we
first select the node with the highest PageRank value and
then select the attribute dimension with the largest value
if the corresponding node attribute vector has multiple
dimensions.
D – Reproducibility and Machine Configuration. The
experiments are performed on a Red Hat Linux Server -
6.9 with Intel Xeon E7-4820 at 2.00 GHz and 32GB RAM.
Random walk graph kernel is implemented in Python 3.6
and network alignment in Matlab. All datasets are publicly
available. We will release the code upon the publication of
this paper.

4.2 Effectiveness Results
A – Attacking random walk graph kernel. We first compare
the proposed ADMIRING with comparison methods in the
task of attacking random walk graph kernel with different
types of network elements, i.e., edges, nodes and attributes.
The results of ∆f

f are summarized in Figures 2, 3, and 4,
respectively. We can see that the proposed ADMIRING and
its batch-mode variant ADMIRING-v (two red bars) achieve

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 13,2021 at 06:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3078634, IEEE
Transactions on Knowledge and Data Engineering

9

a very similar performance as their bruteforce counterparts
(two yellow bars). As we will show in the next subsection,
the bruteforce methods are much more expensive in terms of
computation. In the meanwhile, the proposed methods (two
red bars) consistently outperform all the remaining methods
by a large margin in the three attacking scenarios across
all datasets. For example, on REDDIT-BINARY dataset, the
proposed method ADMIRING-E is 14.5 times better than the
best competitor method (i.e., ADMIRING-E vs. Q-Matrix) by
attacking edges; on DHFR dataset, by attacking nodes, the
proposed ADMIRING-N is 259% better than Q-Matrix, and
for node attribute attack, our proposed method ADMIRING-
A is 1.93 times better than Q-Matrix on ENZYMES dataset.
For the reported results in Figures 2, 3 and 4, the budget k
is set to be 10, and the damping factor α is 0.2 for result in
Figure 4.

Second, we evaluate and compare the impact of different
attacking methods on the network classification results,
summarized in Figure 5. We can see both the ADMIRING
method and the bruteforce method can significantly im-
pact the classification results. For example, on PROTEINS
dataset, our proposed method can reduce the classification
accuracy by 8.82%, 10.52%, and 6.98% by attacking edges,
nodes and attributes, respectively. On the other hand, the
attacking effect by other methods is quite marginal. For
example, the best competitor method (Q-Matrix), can only
achieve a reduction of 3.35% in classification accuracy by
attacking nodes.
B – Attacking network alignment. Here, we evaluate dif-
ferent attacking methods for the task of network alignment.
The results on ACM and DBLP datasets are presented in
Figure 6. We have the following observations: (1) both the
proposed ADMIRING method and the bruteforce method can
considerably impact the network alignment accuracy, and
outperform all other baseline methods. For example, on
ACM dataset, our proposed method can reduce the align-
ment accuracy by 8.53%, 10.50%, and 4.89% by attacking
edges, nodes and attributes, respectively; (2) the impact on
the alignment accuracy by other remaining methods are
all very marginal. For instance, on DBLP dataset with the
Q-Matrix method, the alignment accuracy only decreases
2.14%, 3.63%, and 0.84% by attacking edges, nodes and
attributes, respectively.
C - Parameter studies. There are three main parameters
in the proposed ADMIRING algorithms, including (1) the
budget k, (2) the damping factor α for attacking node
attribute, and (3) the regularization parameter c . Figure 7a-
7c present some sensitivity results w.r.t. these three pa-
rameters (c0 is set as c0 = 1/(max(eigenvalue(N1A1)) ×
max(eigenvalue(N2A2)) + 1) in 7a and 7b, α is set as 0
in 7a and 7c.). We can observe that our proposed method
ADMIRING has a very close performance to the brute force
method w.r.t all the three parameters in a wide range. In
the meanwhile, the performance increases monotonically
w.r.t. α, which is consistent with our intuition (i.e., the
more we alter the attributes, the more the mining results are
influenced). Another observation w.r.t c is that ∆f

f decreases
significantly as we reduce the value of c. A possible explana-
tion for this is as follows. Recall that vec(X) = QN×q×. By
expanding the matrix inverse Q ((I− cA)−1 =

∑∞
i=0 c

iAi),
we can see that as c decreases, Q is approaching I, therefore

the effect of changing A (i.e., attacking network in our
problem) is infinitesimal.
D - Additional Experimental Result. Figure 9a-9c present
the tendency of ∆f as we increase k (i.e., ∆f vs. k) on DHFR
dataset in attacking three types of network elements. We
have the following observations. First, as we increase the
number of attacks (i.e., removal of edges/nodes or alteration
of attributes), the random walk graph kernel is monotoni-
cally decreasing, which is consistent with our intuition. Sec-
ond, both the proposed method and the bruteforce method
can achieve very similar results in terms of altering f , while
significantly outperforming other comparison methods. For
example, in edge attacks, our proposed method is 3.54 times
better than the best competitor (Q-Matrix method) at each
step of attacks on average.

To demonstrate the transferability of our proposed meth-
ods, we train the SVM network classifiers using shortest-
path kernels [20], graphlet kernels [21] and Weisfeiler-
Lehman kernels [22], respectively, and then evaluate the net-
works attacked by ADMIRING-E. We present the results of
classification accuracy before/after attack in Table 4. We can
observe that the proposed methods can also dramatically
decrease the classification accuracy if the SVM classifier is
trained with other graph kernels.

Shortest-path Graphlet Weisfeiler-Lehman

Datasets Before After Before After Before After

MUTAGENICITY 68.57 65.26 70.16 64.78 72.13 62.37
IMDB-BINARY 65.37 58.56 62.78 56.71 63.16 54.97
PROTEINS 71.45 69.23 72.67 68.16 75.18 68.55

TABLE 4: Performance of ADMIRING-E on other graph
kernel-based network classifier.

4.3 Efficiency Results
The scalability result of the proposed methods on COLLAB
dataset is in Figure 8a. We can see that the proposed fast
solutions (ADMIRING-E-Fast and ADMIRING-N-Fast) scale
linearly w.r.t. the input network size(i.e., the number of
edges), which is consistent with Lemma 4.
The quality vs. speed trade-off of the proposed methods on
COLLAB dataset is in Figure 8b. The proposed fast solutions
(ADMIRING-E-Fast and ADMIRING-N-Fast) achieve a good
balance between the ∆f and running time. For instance,
they are 6, 209× faster than the bruteforce counterparts,
while maintaining a similar attacking effect. Compared with
the straight-forward implementations (ADMIRING-E and
ADMIRING-N), their fast solutions (ADMIRING-E-Fast and
ADMIRING-N-Fast) are 133× and 139× faster respectively,
with the same attacking effect (i.e., the horizontal dashed
lines). The results are consistent with our analysis in Theo-
rem 1. That is, due to the quadratic complexity, the straight-
forward implementation is computationally inefficient, even
on moderate-sized networks with up to thousands of nodes
and edges. For the baseline methods (PageRank-E/N and Q-
Matrix-E/N), although they are fast (x-axis), they are much
less effective in attacking the networks (y-axis).
5 RELATED WORK

In this section, we review the related work in terms of (a)
multi-network mining, and (b) adversarial learning.

Multi-network Mining aims to collectively leverage the
relationship among multiple networks for a better mining
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Fig. 2: ∆f
f on seven datasets by removing k = 10 influential edges. Higher is better. Best viewed in color.
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Fig. 3: ∆f
f on seven datasets by removing k = 10 influential nodes. Higher is better. Best viewed in color.
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Fig. 4: ∆f
f

on three datasets by altering k = 10 influential node
attributes (α = 0.2). Higher is better. Best viewed in color.

outcome or reveal patterns that would have been invisible
if we analyze each individual network separately. Graph
kernel is a family of methods that measure the similarity
between two input networks based on walks [5], [7], limited-
sized subgraphs [21], [23] or subtree patterns [24], [25].
Network alignment aims to identify node correspondence
across different networks. A fundamental assumption is
topology consistency [26], which might be violated in some
applications. Some recent work suggests that the alignment
can be enhanced by augmenting the topology consistency
with the node and edge attributes [6]. Furthermore, network
alignment task is found to be complementary with network
completion in a joint optimization framework [9]. Multiple
networks are often not independent of each other, but are
manifested as a network of networks, where each node of
the main network itself is another domain network [27],
[28]. By leveraging the intrinsic relationship among these
networks, it often brings significant performance gain to
the mining tasks. The main network can contextualize the
mining tasks in each domain-specific network by provid-
ing the consistency constraints across networks for both
ranking [27] and clustering [29]. With the increased com-
plexity of the networked system, some efforts have been
towards explainable networked prediction [30], [31]. More
recently, the compatible and complementary information
from multiple networks is exploited to refine the learned
node representations to be robust against the defects in each
individual network [32].

Adversarial Learning studies the learning process in
the adversarial setting, where an adversary can attack the
learning model at the training phase (poisoning) [33] or at
the test phase (evasion) [34]. In white-box evasion attack,
the adversary has the full knowledge of the learning model
(i.e., parameters and hyperparameters). In this scenario, the
construction of the adversarial examples often lends itself
to a constrained optimization problem, where the objective
is to maximally increase the expected loss or lead to mis-

classification with a small amount of perturbation. Since the
optimization problem is often non-convex and intractable,
gradient based approach on an approximation function is
often used. In particular, the fast gradient sign method [34]
employs the first-order Taylor approximation with a low
computation cost. The Jacobian-based saliency map [35]
computes a saliency map from gradient that reflects the
impact of each feature dimension of the classification re-
sult. The adversarial example is crafted by perturbing the
most salient features. On the other hand, the attacker has
no access to the learning models in black-box attack. One
approach is by training a subtitute model by querying
the black-box model and then crafting the adversarial ex-
amples using the white-box attack techniques [36]. Apart
from leveraging the tranferablility of subtitute models, the
zeroth order optimization based attacks directly estimate the
gradient of the black-box model [37] and the decision based
attacks gradually reduce the perturbation relying solely on
the final decision of the model [38]. More recently, adver-
sarial attacks on network mining algorithms start to receive
attentions. The perturbations to the network attributes and
structure can be constructed to mislead the graph convolu-
tion models [39]. Based on the idea of meta-gradients from
meta-learning to solve the bilevel optimization problem, an
effective algorithm is proposed to alter the structure of a
network by adding/deleting edges so as to degrade the
global performance of node classification [40], [41].

6 CONCLUSION
In this paper, we study the problem of adversarial multi-
network mining and formulate it as an optimization prob-
lem. The key idea is to effectively characterize the change
of mining results w.r.t. the perturbations to the network. We
propose a family of algorithms (ADMIRING) that are able to
measure the influence of network elements to the mining
results, along with its fast solver of a linear complexity.
The empirical evaluations on real-world datasets demon-
strate the efficacy of the proposed algorithms. The proposed
method is specifically designed for Sylvester equation de-
fined over the input networks, which applies to a variety of
multi-network mining tasks. Future work includes general-
izing the current method beyond Sylvester equation based
solution in the black-box model setting as well as designing
effective defensive strategies.
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