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InnovationInsights: A Visual Analytics Approach for Understanding
the Dual Frontiers of Science and Technology

Yifang Wang , Yifan Qian , Xiaoyu Qi , Nan Cao* , Dashun Wang*

Abstract— Science has long been viewed as a key driver of economic growth and rising standards of living. Knowledge about how
scientific advances support marketplace inventions is therefore essential for understanding the role of science in propelling real-world
applications and technological progress. The increasing availability of large-scale datasets tracing scientific publications and patented
inventions and the complex interactions among them offers us new opportunities to explore the evolving dual frontiers of science and
technology at an unprecedented level of scale and detail. However, we lack suitable visual analytics approaches to analyze such
complex interactions effectively. Here we introduce InnovationInsights, an interactive visual analysis system for researchers, research
institutions, and policymakers to explore the complex linkages between science and technology, and to identify critical innovations,
inventors, and potential partners. The system first identifies important associations between scientific papers and patented inventions
through a set of statistical measures introduced by our experts from the field of the Science of Science. A series of visualization views
are then used to present these associations in the data context. In particular, we introduce the Interplay Graph to visualize patterns and
insights derived from the data, helping users effectively navigate citation relationships between papers and patents. This visualization
thereby helps them identify the origins of technical inventions and the impact of scientific research. We evaluate the system through
two case studies with experts followed by expert interviews. We further engage a premier research institution to test-run the system,
helping its institution leaders to extract new insights for innovation. Through both the case studies and the engagement project, we
find that our system not only meets our original goals of design, allowing users to better identify the sources of technical inventions
and to understand the broad impact of scientific research; it also goes beyond these purposes to enable an array of new applications
for researchers and research institutions, ranging from identifying untapped innovation potential within an institution to forging new
collaboration opportunities between science and industry.

Index Terms—Science of Science, Innovation, Academic Profiles, Patent Data, Publication Data, Visual Analytics

1 INTRODUCTION

Science is central to improving the human condition [15, 37]. Not only
has science long been recognized as the engine for long-run economic
growth and prosperity, but also it has been essential to creating critical
solutions to confront emergent threats to humanity, from climate change
to the COVID-19 pandemic. While scientific research propels both
fundamental understanding and practical applications [6, 31, 65, 77],
there has been a lack of visual analytics approaches to explore the
complex linkages (i.e., the dual frontiers) between scientific advances
and technical inventions. Here we introduce InnovationInsights, which
represents an initial step toward filling this crucial gap.

A better understanding of the dual frontiers of science and tech-
nology informs a diverse range of stakeholders, from researchers and
research institutions to policymakers and private companies, helping
them identify gaps and opportunities for innovation while facilitating
more rapid and effective knowledge transfer. For example, research
institutions such as universities aim to discover untapped innovation
potentials and forge new collaboration and partnership opportunities
between science and industry. Companies seek to stay abreast of the
latest scientific breakthroughs to drive the creation of new applications.

The availability of large-scale datasets [3, 47,49] tracing scientific
publications and patented inventions and the complex interactions
among them has created new opportunities to tackle this research ques-
tion. Here we build on the Science of Science literature (SciSci [31,65]),
which provides descriptive insights into the connections between sci-
ence and technology [6, 47, 77]. While SciSci has furthered our under-
standing of the uses of science both within and outside of science, it
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also highlights the numerous challenges to interactively explore the
complex interactions among multiple entities, from inventors and inven-
tions to scientists and their publications. Meanwhile, existing studies in
the visualization community have primarily focused on papers [46, 53]
or patents [8,41,43] separately, rarely examining their interconnections.

Here we hypothesize that visual analytics may provide an effective
means to meeting these new analytical demands. Designing such a
system requires us to overcome several major challenges: (1) The com-
plexity of the data, which encompasses networks, multi-dimensional
attributes, hierarchical structures, and temporal features, poses visual-
ization challenges for effectively navigating these complex interactions;
(2) The multi-dimensional nature of the entities and complex linkages
among them, coupled with multiple levels of granularity, pose analytical
challenges for quantitative measures of the science-technology inter-
face. (3) The massive amounts of underlying data, including papers,
paper citations, patents, patent citations, and paper-to-patent citations,
pose scalability challenges for the system. (4) Given the long pathways
in knowledge transfer, we need new predictive models to accompany
visual approaches to identify innovation gaps and opportunities.

To tackle these challenges, we first characterize the problem domain
and define a set of statistical measures in collaboration with our domain
experts. We then develop a prediction model to estimate the extent to
which scientific advances may propel future technological applications,
allowing us to systematically identify a list of innovators whose work
holds considerable potential for commercialization. Based on these
measures and models, we develop a visualization system with multi-
dimensional views into the complex relationships between science
and technology. We introduce the Interplay Graph, which enables
interactive exploration of the dual frontiers of science and technology
in a scalable manner. Our contributions are summarized as follows:
• We formulate the domain of visual analysis of dual frontiers of

science and technology and propose a novel design to visualize the
complex interactions between science and technology.

• We design and develop InnovationInsights, which to the best of
our knowledge, is the first visual analysis system to explore rich
interactions between upstream scientific research and downstream
technological development.

• We conducted comprehensive evaluations, including case studies and
expert interviews, to demonstrate the effectiveness of our system.
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Moreover, we engage with a premier research university and its
institutional leaders as a trial run for the developed visual analytics
systems, helping key stakeholders uncover new insights for gaps and
untapped potentials for innovation in real-world settings.

Overall, the system we developed serves as an initial but crucial step
toward using visual analytics to bridge the ivory tower and the real
world, helping amplify the real-world impact of scientific research
while significantly advancing the R&D success of research institutions.

2 RELATED WORK

The related literature spans three domains, including the science of
science, visualization of scientific data, and graph and tree visualization.

2.1 The Science of Science
The increasing availability of large-scale data tracing nearly all phases
of scientific production and use has fueled the emergence of an in-
terdisciplinary field, SciSci, to explore opportunities and premises to
accelerate scientific discoveries. Despite the rapid progress in this field,
the bulk of the literature has focused on the impact of science within
science, ranging from the unfoldings of scientific careers [48] to the
scientific impact of papers [66], to scientific collaborations [74].

More recently, studies have made initial attempts to quantify the
broad impact of science [6, 49, 77, 78], aiming to better understand the
interface between science and various facets of human society, from
policy-making [78] to public perception [77]. In particular, the inter-
action between science and technology is a critical area of focus, with
studies testing theories that emphasize the connections between patents
and prior scientific advances. Ahmadpoor and Jones [6] conducted the
first systematic analyses into the dual frontier of science and technology,
finding that advances that sit directly at the science-technology interface
are significantly more impactful within their respective domains. Marx
and Fuegi [49, 50] created a large-scale dataset, “Reliance on Science”,
to trace citations from patents to papers. Yin et al. [77] introduced
an index to quantify the extent to which papers from a scientific field
are consumed by patents. Cao et al. [16] specifically targeted the HCI
community and studied the impact of HCI papers on the industry. Over-
all, these efforts contribute to a data-driven understanding of the dual
frontiers. Yet, the statistical nature of these studies highlights the lack
of visualization approaches to studying this important problem. This is
especially true given the substantial challenges in identifying patterns
and extracting insights hidden beneath complex data structures.

In this paper, we aim to provide an interactive visual analytics ap-
proach to help experts analyze the complex interactions between science
and technology more systematically and effectively.

2.2 Scientific Data Visualization
Large-scale scientific data represent a familiar domain in the visual-
ization community, with several comprehensive reviews written on the
subject [10, 18, 28]. Here we examine pertinent studies from these
surveys and recent advances in the visualization community, focusing
on two main categories: (1) visualization for scientific data, and (2) the
science of science within the visualization community.

Visualization for scientific data. Many visualization techniques
have been developed to reveal insights from scientific databases, such
as dynamic and heterogeneous networks [25, 76], sequences and time
series [70,75], multi-dimension measures [54], and texts [26,32]. These
studies introduce general visualization techniques for specific data struc-
tures and use scientific datasets as illustrative examples. Other research
focuses on developing visualization systems to streamline literature
queries (e.g., VitaLITy [53] and VisualBib [21] ), scientific discoveries
(e.g., VIStory [24] and Galex [46]), and academic evaluations (e.g.,
SD2 [33]). These studies only use data within science (i.e., papers).

Similar to papers, patent data are also of a textual, network, and
temporal nature. Studies using patent data cover several themes: patent
document classification [8,39] and information retrieval [11,41], knowl-
edge discovery using patent citation, semantic, or agent (e.g., inventor
and organization) networks [11, 39, 72], and technology evolution and
emerging technology exploration [8, 72]. In addition, a few studies pro-
vide a comprehensive analysis by visualizing multifaceted patent data.
PatViz [41] summarizes patent search results using various factors (e.g.,
patent categories), but it does not focus on the relationship between

papers and patents. DIVA [51], on the other hand, creates network link-
ages between papers and patents using keyword similarity. However, it
fails to provide deep insights between science and technology due to
the absence of paper-patent citations.

Science of science within the visualization community. A grow-
ing number of studies have explored scientific data within the visu-
alization community to reflect on community development. These
studies involve the creation of specific datasets like Vispubdata [36],
VIS30K [19], and VisImages [22], and the development of platforms
such as VIS Author Profiles [44] and VISPubComPAS [71]. Addition-
ally, many works statistically analyze the community’s development,
focusing on aspects such as authors [34], topics [34], genders [59, 62],
collaborations [59], peer reviews [73], and so on.

Overall, these studies have focused on papers or patents separately,
ignoring the complex interactions between them. Our work combines
multiple data sources for papers and patents to systematically study the
dual frontiers of science and technology.

2.3 Graph and Tree Visualization
Graph [5, 9, 23, 35, 69] and tree [45, 55, 68] visualization have been
studied extensively in the visualization community. Here we discuss the
most relevant techniques for paper-patent citation networks, including
bipartite graphs, compound graphs, and tree visualization.

Patent-paper citations may be represented as a bipartite graph prob-
lem. Sun et al. [61] proposed a technique, bicluster-based seriation,
to reduce edge crossings in a bipartite graph. Chan et al. [17] used
the minimum description length (MDL) principle to aggregate bipar-
tite relations for scalability. However, they disregard complex node
attributes, such as temporal and hierarchical structures, rendering them
unsuitable for our scenario. The compound graph technique, often
used for large-scale networks to group nodes for scalability, is another
relevant method [9]. Our work also uses this technique to visualize the
large-scale citation graph by grouping paper and patent nodes.

Tree visualization displays hierarchical node connections [55]. Vari-
ous tree types use the width of the link to represent the flow quantity
between the parent and child nodes, such as decision trees (e.g., Baob-
abView [64] and TreePOD [52]) and flow maps [12, 56]. However,
most methods focus on static graphs and neglect the hierarchical aspect
of nodes. They are insufficient for our needs, as we require temporal
dimensions and detailed exploration across various levels of detail.

We, therefore, propose a scalable node-link representation that sum-
marizes the citation between papers and patents, overcoming various
domain-specific constraints.

3 SYSTEM DESIGN

In this section, we summarize the analysis goals and design tasks and
introduce the system overview.

3.1 Analysis Goals
Over the past two years, we have been working closely with leaders
from a premier US research university to understand and predict a
university’s innovation landscape and potential. We first collected
private data from various organizations in the university, including
(1) Technology Transfer Office (TTO) on invention disclosures and
outcomes, licensing, and startups; (2) HR Office on faculty roster
with demographic data (e.g., name, gender, rank, and department);
and (3) Sponsored Research Office on grant applications and their
outcomes (granted or rejected). We then linked these data with global
innovation databases on science and technology, capturing publications,
patents, and how these publications are cited in patents as prior art,
spanning all scientific fields and patenting domains. After a massive
data cleaning and linkage, we used statistical methods for data analysis.
We then presented our findings to leaders from seven top US research
universities (i.e., two public land-grant, three public non-land-grant, and
two private universities), four R&D-based companies and venture firms,
and four science funders. During these interactions with leaders in
science, industry, and government, we saw great interest in identifying
untapped innovation potential in research institutions across a wide
range of stakeholders. Given the novelty of the research question and
the diverse array of stakeholders it informs, we quickly realized the
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need for a visual system, which would be crucial for efficient analysis
and communication among multiple stakeholders.

To this end, we initiated an interdisciplinary collaboration with
domain experts from various fields to design a visual analytics system
nine months ago. Two experts, EA and EB, are from the TTO of our
partner university. EA is a senior director of invention management
who helps faculty convert their scientific output into patents. EB is an
analyst providing data-driven support. The other two experts, EC and
ED, are SciSci researchers. EC is a well-known professor in the field
of SciSci. ED is a postdoc who focuses on statistical measurements
of university innovations. They all aim to understand how scientific
research influences technology development and to find promising
scientific directions and researchers with high innovation potential.
To achieve this objective, they seek to explore the interplay between
science and technology comprehensively. Existing methods rely on
statistical analysis via ad-hoc analysis procedures, lacking an integrated
system to help identify key innovators and research topics. The experts
particularly identified three critical analysis goals:

(I) Researcher Identification. Identifying researchers and research
ideas with high potential for practical applications and commer-
cialization opportunities will help research institutions to better
support researchers with a greater level of equity and efficiency.

(E) Interplay Exploration. Exploring the interplay between science
and technology is another goal frequently mentioned by experts.
The exploration requires not only the extraction of relational
patterns (e.g., paper-patent citations) but also the interpretation of
these connections in the context of knowledge transfer.

(P) Invention Prediction. Being able to predict the future likelihood
of patentability and the commercialization potential of scientific
research and technological inventions is a highly desirable capa-
bility by our domain experts.

3.2 Visualization Design Tasks
Given the goals above, we devised the design tasks by following the
expert-focused design study methodology [60]. To this end, literature
reviews guided by our experts, requirement analysis via expert
interviews, as well as brainstorming sessions with both visualization
and SciSci experts, were conducted iteratively. The design tasks for
each analysis goal are outlined below:

Tasks for Researcher Identification (I)
I1: Provide Researcher Overview. The visual analysis system

should provide an overview of researchers to help analysts se-
lect individuals of interest for further investigation, by aligning
researchers based on their research profiles.

I2: Create Productivity Portrait. The system should illustrate
the detailed characteristics of individual researchers to help the
analysts identify talent and potential. Two types of information
are of particular relevance: (1) demographic information–such
as gender, age, and job rank–for equity and inclusion; (2)
productivity and impact measurements for research output.

Tasks for Interplay Exploration (E)
E1: Inspect the Interplay. The visualization design should be scal-

able enough to display large-scale linkages between scientific
papers and technical inventions at both individual and field levels
intuitively. The design should also clearly reveal the papers that
are cited heavily by patents and highlight their characteristics to
help analysts understand the key factors in knowledge transfer.

E2: Reveal Temporal Trends. The design should reveal the temporal
changes in research topics and the corresponding technical de-
velopments to help analysts understand the evolving frontiers of
science and technology.

E3: Reason with Contextual Information. Beyond showing the
interplay based on explicit linkages between patents and papers,
the visualization should capture contextual information to
help analysts uncover implicit linkages between research and
technology. The contextual information can be captured by

Fig. 1: System overview. InnovationInsights consists of a data storage
module, a data analysis module, and a data visualization module.

SciSci measures of papers, fields, and the assignee information of
patents, which is crucial for identifying important research or
estimating the commercialization potential of an invention.

Tasks for Invention Prediction (P)
P1: Identify Untapped Innovation Potential. Our system should

uncover untapped innovation potential in researchers, research
topics, and scientific fields. This key capability building on the
prediction model and intuitive visualization will significantly
facilitate knowledge transfer for the latest scientific advances.

3.3 System Overview
Following the above analysis goals and design tasks, we design In-
novationInsights as an online system that consists of three modules
(Fig. 1): (1) the data storage module, (2) the data analysis module, and
(3) the visualization module. The data storage module preprocesses
data from multiple sources and stores it in a database. The data analysis
module conducts a series of measurements on different entities (e.g.,
papers, patents, and researchers) and employs a prediction model to
recommend papers with high patentability potential. The two modules
form the backend of the system. Both historical and prediction data are
fed into the data visualization module to display intuitive data insights.

4 DATA ANALYSIS

The data analysis module is designed to calculate the contextual in-
formation for visual analysis and decision-making. Specifically, we
consider two types of information: (1) the data facts about papers,
patents, researchers, and assignees that are calculated based on a set
of statistical metrics; (2) the potential of scientific research (i.e., a pa-
per) to be transferred, which is estimated by a deep prediction model
implemented based on a graph convolutional network (GCN). Before
drilling into technique details, we will first introduce the data we use.

4.1 Data Preprocessing
Analyzing dual frontiers of science and technology needs to integrate
data from various sources (Fig. 2(A)), which are listed as follows:

• Scientific Research Records. We leverage the Microsoft Academic
Graph (MAG) dataset [67] to retrieve information about scientific
research. The dataset consists of 270M research papers and their
corresponding meta information, including the title, publication year,
topic keywords, doi, author list, author affiliations, and citations.

• Technical Inventions. We use the patent records collected in
PatentsView [3] to capture the technical inventions and reveal the
development of technologies. This dataset contains over 7.9M
patents filed through the United States Patent and Trademark Of-
fice (USPTO [4]). A subset of the most relevant patent attributes is
carefully selected for analysis, including patent ID, title, application
year, assignee name (i.e., the owner of the patent), and cooperative
patent classification (CPC, i.e., the category of the patent [1]). The
CPC category we used consists of three levels: section, subsection,
and group (the lowest level). Private data (e.g., invention disclosures
and patents collected by research institutions) are also used.

• Science-Technology Linkages. To analyze the interplay between
scientific research and the development of technology, we use data
collected from “Reliance on Science” [49, 50], which include more
than 40M citation data that record the details about how technical
innovations (i.e., patents) cite research papers.
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Fig. 2: The analytical process. (A) We preprocess data into the network and multi-dimensional structures. (B)-(C) Next, we construct SciSci metrics
using scientific facts and predicted results at the paper level. (D) Finally, we aggregate paper-level metrics to get researcher-level metrics.

• Researcher Profiles. This dataset provides demographic informa-
tion (e.g., gender, rank, and affiliation) for each researcher, collected
by research institutions (e.g., gender and rank) or automatically in-
ferred by algorithms (e.g., gender [38]). The data also contain each
researcher’s publication records, which are collected from the public
(e.g., MAG [67]) and private sources (e.g., university libraries).
We extracted a subset of the data above (supplementary material)

to demonstrate our idea of analyzing the dual frontiers of science and
technology. This subset includes papers from a 20-year period (2001–
2020). A group of researchers and patent assignees were also filtered
out for analysis. In particular, the patent assignees were classified into
three categories, i.e., university assignees, company assignees, and
others, to provide additional context information.

4.2 Scientific Facts
We analyze the data to capture the scientific facts for each research
paper and each individual researcher based on a set of carefully defined
metrics. Specifically, given a research paper P , the following metrics
are designed to help analysts estimate the quality and impact of P
in the context of knowledge transfer (Fig. 2(B)), which are calculated
based on the entire dataset in Section 4.1:
• Team Size: the total number of co-authors of the paper.
• Institution Count: the total number of different affiliations regarding

the co-authors of the paper.
• Grant Count: the total number of grants sponsoring the research

for the paper. Due to data availability, we focus primarily on grants
from NSF and NIH as a demonstration.

• Science Citation: the total number of citations the paper received
within 5 years of publication.

• Disruption: the degree to which papers citing the focal paper P
tends not to cite P’s references [74], which is formally defined as:

D =
ni −n j

ni +n j +nk
(1)

where ni is the number of subsequent papers that only cite the focal
paper, n j represents the number of subsequent papers that cite both
the focal paper and its references, and nk represents the number of
subsequent papers that only cite the references of the focal paper.

• Novelty: the extent to which the focal paper’s combination of existing
knowledge deviates from the norm among all journal pairs. We
first calculate the z-score for each journal pair by comparing its
observed frequency to the expected frequency in randomized citation
graphs [63]. The focal paper’s novelty score is determined by the
10th percentile z-score of the journal pairs cited in its references.

• Patent Citation: the total number of patents that cite P within 5
years of its publication. This metric is used to measure P’s impact
on technical inventions.
In addition, in order to estimate a researcher R’s performance in

scientific research and impact on technical inventions, we define the
following metrics (Fig. 2(D)):
• Paper Count: the total number of papers that R has ever published.
• Invention Count: the total number of invention disclosures that R

has ever disclosed to the university.

• Scientific Citation: the number of research papers that cite R’s
papers within 5 years of each paper’s publication.

• Number of Papers Cited by Patents: the total number of papers that
have been cited by at least one patent. This metric measures R’s
impact on technical inventions.

4.3 Invention Prediction

The ability to estimate the potential of a paper for future inventions
helps analysts to identify the next promising research topics as well as
potential inventors. Here we introduce an invention prediction model to
compute the probability that a research paper will spur future inventions
in a given area. The model is designed based on the observation
that when the knowledge obtained from a scientific research paper is
used in a technical invention, the paper will be cited directly by the
corresponding patent. Therefore, we use the citation links from patents
to papers as a key feature to train a graph convolutional network (GCN)
to help us estimate how likely (i.e., the probability) a paper P will
be cited directly by patents from a specific technical area, as indicated
by class labels (Fig. 2(C)). We briefly review the architecture of GCN,
followed by our implementation details below.

Graph Convolutional Network. GCN is a crucial technique for
deep learning on graph-based data [40]. It has transformed the field
by providing a powerful way to analyze and model graph-structured
data, which is common in many real-world applications such as social
graphs, molecular graphs, and citation graphs [57, 58]. In our case,
papers are connected by citations that form a citation graph, and thus
GCN is naturally suited to our prediction task. In addition, compared
to traditional deep learning models for grid-like data (e.g., images),
GCN has several advantages. First, it can capture both local and global
structures of the graph and also can handle graphs of varying sizes and
structures. Second, it can be trained using both labeled and unlabeled
data, i.e., in a semi-supervised learning way. By using unlabeled data,
the model can learn more generalized representations of the data, which
can improve its performance on the labeled data.

The input for GCN is a graph, in which each node is associated with
an F-dimensional vector arranged as a row of the feature matrix X ∈
RN×F . The adjacency matrix A ∈ RN×N represents the relationships
between all nodes in the graph where the element Ai j indicates the
presence (1) or absence (0) of an edge between node i and node j. The
label matrix Y ∈RNs×C, where Ns is the number of nodes with labels in
the graph and C is the number of classes. The element Yi j is 1 if node i
belongs to class j, and 0 otherwise.

Layer-wise Propagation Rule. The standard GCN proposed by
Kipf and Welling [40] takes two propagation layers to perform graph
convolution operations on the input data. The first layer is defined as:

H = ReLU(ÂXW 0) (2)

where W 0 ∈ RF×B is the weight matrix connecting the inputs and
the first layer of the GCN. The graph is encoded in Â = D̃−1/2(A+

IN)D̃−1/2, where IN is the identity matrix, and D̃ is a diagonal matrix
with D̃ii = 1+∑ j Ai j. ReLU(·) = max(·,0) is the activation function.
H ∈ RN×B is the matrix of activations of the first layer.

4

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3327387

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 11,2023 at 02:26:06 UTC from IEEE Xplore.  Restrictions apply. 



© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Fig. 3: The system UI of InnovationInsights. The Researcher Overview View (A) and Researcher Statistics View (B) are for individual-level analysis.
The Innovation View (C) shows the detailed interplay between science and technology. The Technology Inspection View (D) and Science Inspection
View (E) provide additional contextual information about patents and papers.

The output layer is formally defined as follows:

Z = softmax(ÂHW 1) (3)

where W 1 ∈ RB×C is the weight matrix connecting the first layer and
output layer of the GCN. softmax(x)i = exp(xi)/∑ j exp(x j) where x is
a vector. Z ∈ RN×C is the output matrix of GCN where the element Zi j
represents the probability of node i belonging to class j.

Loss Function. GCN evaluates the cross-entropy error between the
predicted class probabilities Z and the true labels Y for the nodes in the
training set:

L =− ∑
l∈NT

C

∑
c=1

Ylc lnZlc (4)

where NT is the set of nodes in the training set.
Implementation. In our work, the input feature matrix X is com-

posed of paper title embeddings using SPECTER [20], a popular API to
generate embeddings for research papers. The input graph A represents
the citation graph between papers. Given a patent CPC category g, the
label matrix Y provides information on whether a paper is cited by a
patent from CPC category g within 5 years of publication. We selected
a 5-year duration for the experiment because our experts prioritized
recently published papers and aimed to determine if a paper would be
cited by patents soon after its publication. We split the papers published
between 2001 and 2014 into a training set (70%) and a validation set
(30%), and use papers published in 2015 as the test set. For each paper
published between 2016 and 2020, we predict its likelihood of being
cited by patents in the CPC group g. We use the PyTorch Geometric
implementation of GCN [30] and follow the experimental setup pro-
posed by Kipf and Welling [40]. Our model has 200 epochs of training
iterations, a learning rate of 0.01, a dropout rate of 0.5, and 16 hidden
units. The weights of the neural network (W 0 and W 1) are trained using
gradient descent to minimize the loss L . To determine the likelihood
of a paper P published between 2016 and 2020 being cited by patents
in the CPC group g within 5 years of publication, we use the predicted
probabilities in the softmax output matrix Z obtained from the final
model. In addition, to assess its relative importance within a specific
range of papers (e.g., those within a research institution), we further
convert its probability to a percentile, denoted as Patentabilityg

P , which

is a scalar ranging from 0 to 100.
We apply the above prediction pipeline to the top K patent CPC

groups g (denoted as G) based on the number of patents citing our
target papers. To assess a paper’s overall patentability across different
CPC groups, we compute its average likelihood of being cited by patent
CPC groups g in G (i.e., Patentabilityg

P ), denoted as PatentabilityP .
To evaluate a researcher’s overall performance, we calculate the

average PatentabilityP of all their papers published between 2016 and
2020. This aggregated value is called the P-index. To the best of our
knowledge, the P-index is the first index proposed in the SciSci litera-
ture that measures the extent to which a researcher’s recent papers will
be cited by patents in the future, acting as an indicator of a researcher’s
potential for commercial success. The higher the P-index, the higher
the commercialization potential of the researcher.

5 VISUALIZATION

This section presents the visual design of InnovationInsights. We intro-
duce the user interface through a usage scenario followed by detailed
descriptions of visualization views and corresponding interactions.

5.1 User Interface
Fig. 3 illustrates the user interface of the proposed system, which con-
sists of five coordinated views (Fig. 3(A-E)). A user can start from the
Researcher Overview View (Fig. 3(A)) to choose a group of researchers
(I1), whose scientific facts and profile information are summarized
as the context in the Researcher Statistics View (I2, Fig. 3(B)). The
user can then filter to find interested researchers based on this con-
textual information. Two sets of horizon graphs are used to illustrate
the trend of science and technologies (E2) by displaying the changes
in the numbers of the papers (Fig. 3(C1)) and patents (Fig. 3(C2)) in
different fields. The user can brush a period of time to filter the papers
or patents through these horizon graphs. Once the data (i.e., researchers,
papers, and patents) are filtered out, an interplay graph (Fig. 3(C3))
will visualize the citations between the selected patents and papers
to reveal the interplay between science and technology (E1). In this
view, the user can interactively filter the citations via fields to learn the
science-technology connections at different levels of detail. To give
the user a better understanding of the connections, additional context
information such as keywords for the selected patents (Fig. 3(D)) and
the list of the selected papers (Fig. 3(E)) is also displayed (E3).

5

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3327387

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on December 11,2023 at 02:26:06 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


Fig. 4: The design of the Interplay Graph is inspired by the river metaphor:
(A) the structure of the river; (B) the river-like visual metaphor shows
citation linkages between papers and patents with three components:
Paper Matrix, Patent Icicle Plot, and Citation Flow.

Despite the exploitative analysis above, the user can also investigate
the potential inventors and inventions from multiple views based on the
invention prediction results (P1). For example, the user can observe
the P-index scores of researchers in the Researcher Overview View via
the opacity of the circles. The user can also examine the researcher
distribution (Fig. 3(B3)) and rank the researchers based on P-index in
the Researcher Statistics View. In the Innovation View, the user can
filter recent papers with high prediction scores using a slider (Fig. 3(C))
and observe the prediction flow to identify the promising paper fields
with high patentability potential. The user can also click a paper cell to
check the details in the Science Inspection View.

5.2 Interplay Graph
The Interplay Graph (Fig. 3(C3)) is the primary visualization compo-
nent that enables users to explore the detailed citations from patents
to papers and reveal the interplay between scientific research and tech-
nological inventions (E1, P1). It consists of three components Paper
Matrix, Patent Icicle Plot, and Citation Flow, whose design is inspired
by a river metaphor (Fig. 4). The Paper Matrix symbolizes the knowl-
edge landscape, and the Citation Flow illustrates the diverse branches
of knowledge that ultimately merge into the Patent Icicle Plot, repre-
senting vast technological rivers.

Paper Matrix. The Paper Matrix summarizes all the selected papers.
As the experts sought to explore the interplay at the level of the scientific
field, we use each column to represent a research field and each row to
show a numerical citation range that indicates the extent to which the
papers displayed in the row have been cited by patents. The citation
number increases from the top to the bottom, i.e., the papers in the last
row at the bottom of the view are those that are most cited by the patents.
To deal with large-scale datasets, the Paper Matrix supports interactive
hierarchical aggregation via both columns and rows. In particular,
the rows can be aggregated by directly merging the citation ranges;
the columns, i.e., research fields, can be aggregated by following the
research field hierarchy introduced in the MAG.

A node in the Paper Matrix indicates a collection of aggregated
papers, which can be illustrated either by a circle or by a star glyph
(Fig. 7(B2)). The size of the circle indicates the number of papers in
the collection, and the opacity represents the papers’ averaged patent
citation number. The star glyph summarizes the papers’ statistical
features (i.e., scientific facts in Section 4.2).

To reveal how broadly the papers in a research field F affect tech-
nologies across different areas, we compute a diversity score:

diversity =−
n

∑
i=1

P(xi)logP(xi)

where i is a patent area. The score indicates the diversity of the area
of the patents that cite the papers within F . Intuitively, the larger the
diversity score is, the larger F ’s influence will be. We use the size of
the blue circle on top of each column (Fig. 3(C5)) to show this score.

Patent Icicle Plot. The Patent Icicle Plot uses an upturned icicle
plot [42] to summarize the patent CPC categories from a three-level hi-
erarchy (Fig. 3(C3)): section, subsection, and group [1]. Each rectangle
represents a category, with the length encoding the number of patents
in that category. The patent fields are by default in alphabetical order,
as required by our experts to query patent categories more efficiently.

Citation Flow. The Citation Flow visualizes citation linkages from
patents to papers. The flows start from a node in the Paper Matrix,
converging at a field at the bottom of the Paper Matrix, and finally
merging into Patent Icicle Plot, as if the knowledge is flowing from the
broad scientific landscape to the technology fields (Fig. 4). The width
of the flow represents the number of patent citations. The thicker the
flow, the heavier the patent category relies on the knowledge from the
collection of the connected papers.

We tend to lay out paper fields with similar patent citations near
each other to conveniently explore interdisciplinary patent citations. At
the same time, we also keep paper fields with more patent citations
near the center of the Paper Matrix for a balanced visual appearance
with thick flows in the center. To reduce the visual clutter caused by a
large number of citation links, we reorder the research fields and route
the flows to help reduce line crossing. Formally, the layout procedures
described above can be formulated as an optimization problem with the
following objective:

α ∑
i< j

wi j
∥∥xQi − xQ j

∥∥2
+β

m

∑
i=1

∥∥∥xQi − xQ′
i

∥∥∥2
+ γ

m

∑
i=1

n

∑
j=1

∥∥xQi − xPj

∥∥2

where x represents the horizontal position of the paper or patent fields.
Q represents the set of total m paper fields: {Q1, ...,Qm}. Q′ denotes
the optimally ordered list of m paper fields, sorted by the number
of patent citations in the field, which positions fields with the most
citations in the center: {Q′

1, ...,Q
′
m}. P represents the set of total n

patent categories: {P1, ...,Pn}. wi j is the cosine similarity of paper
pairs based on patent citation similarity. Intuitively, the first term in
the objective function puts paper fields with similar patent citations
near each other. The second term balances the flows by centralizing
paper fields with more patent citations. The third term minimizes the
paper-patent citation flow crossings. We balance the three parts based
on the parameters α , β , and γ . The flows are rendered using cubic
Bézier curves, which are bundled to reduce visual clutter and emphasize
important flows.

5.3 Context Views
The system also provides a number of coordinated views for users to
explore the connection between science and technology and identify
untapped potential more systematically with context information.

Researcher Overview View. This view summarizes all researchers
in a scatter plot (I1, P1, Fig. 3(A)) to help experts locate researchers of
interest based on research profiles. Each circle represents a researcher,
with the opacity encoding the P-index. We use a contour map to show
the distributions of researchers. The x-axis and y-axis indicate two
researcher metrics (introduced in Section 4), which can be interactively
changed based on users’ preferences.

Researcher Statistics View. This view summarizes characteristics
and detailed researcher information for the selected group (I2, P1). It
supports two visual modes: (1) bar charts and histograms that sum-
marize the demographic information and SciSci metric distribution
(Fig. 3(B1)); and (2) researcher cards that show the list of researchers
(Fig. 3(B2)), which can be ranked by different SciSci metrics.

Field Timeline. The time dimension is also essential to help users
identify trending topics in the dual frontiers. Thus, we designed two
groups of horizon graphs to reveal the temporal evolution of different
fields in science and technology (E2, Fig. 3(C1)). Each paper or patent
field is represented by a horizon graph which shows the temporal
evolution in a space-saving way. The x-axis is the timeline. The
saturation of the area encodes the papers or patents published or granted
in each field every year. Darker color indicates a higher value.

Technology Inspection View. This view shows additional context
information about patent categories (E3, Fig. 3(D)). In addition to
patent categories displayed in the Interplay Graph, the experts wanted
more details on the assignee distribution and patent topics to aid in
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Fig. 5: The prediction performance (AUC) on the test set for two case
studies. The average AUC and its 95% confidence interval are reported
for each case and CPC section, based on the performance across CPC
groups within that section. The dashed lines at 0.5 indicate the baseline
performance of random guesses. Overall, the results demonstrate good
performance for our prediction tasks.

decision-making (e.g., identifying potential partners and directions for
invention commercialization). Thus, this view includes a two-level
sunburst showing the proportion of assignees and a word cloud in the
center showing the keywords of the selected patents.

Science Inspection View. To facilitate paper-level exploration, the
Science Inspection View shows a paper list (E3, Fig. 3(E)) that can be
ranked based on the statistical matrices introduced in Section 4.2 as
well as a list of histograms showing distributions of paper-level metrics.

5.4 Iterative Design Process
We went through multiple iterations for the design of the major visual
components with our experts. Specifically, for the Interplay Graph, we
initially used a graph where each node represented a paper or patent.
However, it was not scalable for data with large volumes, and experts’
feedback indicated that a field-level display was more critical. We thus
aggregated the graph to the field level as a bipartite graph. One further
feedback was to unfold papers in the same field into different groups
based on patent citations, as they wanted to compare the differences
among these paper groups. We thus unfolded paper-field nodes into a
paper matrix with statistics summarized in each matrix node. Finally,
our experts asked us to depict the temporal evolution of the dual fron-
tiers for the purpose of identifying trending topics. We thus presented
three choices: a timeline emphasizing temporal evolution [14], and two
others emphasizing the citation structure (node-link (Section 5.2) and
matrix [13]). The experts ultimately prioritized citation structure with
the more intuitive node-link representation, leading us to depict the
timeline as a secondary data dimension via the horizon graphs.

6 EVALUATION

We evaluated InnovationInsights through a quantitative study of the
prediction model, two case studies, and interviews with experts.

6.1 Quantitative Evaluation of the Prediction Model
Due to the class imbalance between papers that receive patent citations
and those that do not, we evaluate the performance of our model using
the AUC (Area Under the Curve) metric. Our final model is chosen
from the epoch that produces the highest AUC score on the validation
set. We evaluate the model by presenting its prediction performance
and scalability in the two datasets used in two case studies (Section 6.2).
We apply the prediction pipeline above on the top K patent CPC groups
g (denoted as G) in the case studies in Section 6.2. We focus on the top
50 patent CPC groups because they cover more than 95% of patents
citing our target papers in the case studies.

• AUC. We present the AUC results on the test set across CPC groups
by CPC section in Fig. 5. The overall prediction performance is
good and remains robust across different CPC groups.

• Scalability. The time complexity of GCN has been demonstrated to
be linear in the number of graph edges and can scale to millions of
edges [40]. In our two cases, the training time per epoch was less
than 10 seconds with CPU-only implementations. We also ran the
codes in parallel for different CPC groups to accelerate the prediction
process. Moreover, the prediction model is pre-executed and does
not impact the visualization system in real time.

Fig. 6: The paper-patent citation flow in case 1. (A) Nanotechnology
and composite material are the predominant science fields consumed
by patent category C08J. (B) The historical flow shows most papers
published by selected researchers are in basic biology journals. (C) The
prediction flow shows the papers in genetics published by the selected
faculty also have a high potential for innovation.

6.2 Case Study
We invited our experts to explore the system. First, each expert explored
the system independently. We then summarized their findings and
formed two case studies to demonstrate our system.

6.2.1 New Opportunities for University Innovation
We piloted the system with a premier research university and focused
on 461 faculty who have at least one paper that has been cited by a
patent (37K papers in total). This case study demonstrates how Innova-
tionInsights enables our experts (EA and EB) to uncover new innovation
opportunities and facilitate knowledge transfer for researchers.

Overview of the innovation landscape. After loading the data
from the university, the experts started from the Citation Flow (E1,
Fig. 3(C3)), finding material science, biology, and chemistry, as the
three predominant disciplines whose knowledge has spurred inven-
tions across many patent categories. Highlighting one category C
(“Chemistry; Metallurgy”, Fig. 3(C4)), the experts noticed that this
category draws from papers in not just chemistry but also material sci-
ence and biology, emphasizing its interdisciplinary orientation. There
was also high diversity in the paper-patent citation for material sci-
ence (Fig. 3(C5)). Zooming in, the experts found at least six major
patent categories, with C08J (General Processes of Compounding)
as the most rapidly emerging technology area. This area primarily
consumed knowledge from nanotechnology and composite material
(Fig. 6(A1)), which indicates that these research topics were important
in this university. This patent category also relied heavily on papers
with large numbers of patent citations (Fig. 6(A2)) in nanotechnology,
showing their importance in technology development. Choosing this
cell (E3), the experts found that the top-citation papers were about
polymer nanocomposites. When the experts went to the Technology
Inspection View (E3, Fig. 3(D)), they found that unexpectedly, the
largest university assignee was KFUPM (a university in Saudi Arabia,
Fig. 3(D1)) rather than the university itself, and that this university just
started to cite papers in the university in recent years. This finding
represented fresh insights for the experts: “in most cases, we expect our
own university to be the largest assignee citing our papers. So this find-
ing is rather unexpected. Maybe there are collaboration opportunities
with KFUPM, especially in nanotechnology.”

Uncover hidden talents. The experts are also interested in uncov-
ering hidden talents and untapped innovation potential. Indeed, when
examining the Researcher Overview View (I1, Fig. 3(A)), plotting the
number of invention disclosures vs. patent-cited papers for each in-
dividual, our experts immediately discovered a fascinating insight: at
the bottom of Fig. 3(A1) lay an interesting group of researchers. They
themselves had no invention disclosures, yet their papers had been
cited frequently by other patents. “Who are these people?” our ex-
perts asked immediately. Zooming in on the Researcher Statistics View
(I2, Fig. 3(B1)) revealed that most of them were full professors at the
medical school. Most of their papers were published in basic biology
journals (Fig. 6(B)), yet surprisingly, they were being cited heavily by
companies, finding widespread uses in the private sector (Fig. 3(D2)).
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Fig. 7: Innovation insights in case 2. (A1)-(A2) The spotting hot new frontiers in the VIS community include mixed reality and 3d computer graphics.
(A3) mixed reality is predicted to be used in a variety of patent categories. (A4)-(A6) Papers in volume rendering are still being cited by new patents
in medicine. (B1) New technologies are increasingly relying on older scientific knowledge. (B2) Relationships between patent citation and other
SciSci metrics: science citations and novelty have positive relationships, while disruption has a negative relationship with patent citations.

The experts thus ranked these researchers by P-index to locate those
with high commercialization potential. They quickly noticed the second
faculty (Fig. 3(B2)) who had a rather high P-index and was the only fe-
male faculty among the top P-index researchers. She had no inventions,
but many of her papers were cited by patents from private companies.
From the Interplay Graph (E1, Fig. 6(C)), the experts gathered that
most of her papers were in cell biology but were increasingly cited by
patents in the C12N (Microorganisms or Enzymes; Mutation or Genetic
Engineering) category (E2, Fig. 3(C6)). And many of these patents
were from the same company, namely Immatics Biotechnologies in
Germany (E3, Fig. 3(D3)). This discovery prompted our experts to
hold an immediate follow-up conversation with the faculty member. It
turned out that while this faculty had done a sabbatical in Germany,
she was completely unaware of this company, or the fact that they were
drawing heavily on her research. Using our system, the experts further
showed the faculty member other prediction results on which of her
other papers in genetics (P1, Fig. 6(C)) revealed a high potential for
innovation. Two weeks following the conversation, she submitted new
invention disclosures to the university, for the first time in her career!

The case shows that InnovationInsights is highly effective in uncover-
ing new innovation potential and opportunities in research institutions.

6.2.2 Innovation Insights in VIS Communities

Our experts (EC and ED) used visualization as an exemplary field to
explore the dual frontiers of science and technology. Specifically, we
identified 2016 top-publishing researchers based on 6 major journals
and 13 leading conferences in VIS and analyzed all their publications.
Spotting hot new frontiers. The experts first focused on the topic of
visualization. In the paper field timeline (E2, Fig. 7(A1)), two topics
quickly stood out: mixed reality and 3d computer graphics. In addition
to being highly popular, these two topics were paired together in the
Interplay Graph (Fig. 7(A2)), suggesting that they were frequently
co-cited by similar patent categories. The experts then filtered recent
papers with high prediction scores (P1). Interestingly, while other areas
(e.g., image processing and real time rendering) had tended to dominate
the field, recent papers in mixed reality are characterized by some of the
highest prediction scores (Fig. 7(A2)), with prediction flows coming
from a variety of patenting domains (e.g., G06F (Electric Digital Data
Processing) and G06T (Image Data Processing)) (Fig. 7(A3)). “This

really speaks to the application potential of ‘mixed reality’,” as our
experts commented. Our experts further noticed that the patent category
A (Human Necessities) was rising in popularity (Fig. 7(A4)). Zooming
in, they found that volume rendering was the most applied science topic
(E1, Fig. 7(A5)) and was primarily used in A61B (Diagnosis; Surgery).
Highlighting A61B and in the Technology Inspection View (Fig. 7(A6)),
the experts found that these patents were related to medical devices.
Curious about what papers were highly cited by patents, they clicked
the paper cell in the last row (E3). Somewhat unexpectedly, the highly
cited papers in this emerging patent category were not new papers;
rather, they were canonical papers in the field (e.g., [27]). “Interesting!
Even after ten years, papers in ‘volume rendering’ are still being cited
by new patents. These papers are canons in the field. They have a
lasting impact on technology development.”
New vs. canonical knowledge? Intrigued by the preceding findings,
the experts returned their attention to human computer interaction and
filtered patent application years based on three ranges in the early, mid,
and end of the period between 2001 and 2020 (E2). In recent years
(e.g., [2019, 2020] and [2015, 2016], Fig. 7(B1)), the patent citation of
old and new papers was diverse. Patents either cited new paper fields
or cited fallen fields many years ago. However, when time went back
ten more years ago, patents tended to cite more new paper fields at that
time (e.g., [2010, 2011] and [2004, 2005], Fig. 7(B1)). “This finding
supports our hypothesis that new technologies are increasingly relying
on older scientific knowledge.”
What kinds of papers tend to see greater uses in technology? The
experts also explored the characteristics of papers that are heavily cited
by patents (E1). To obtain a general view, the experts zoomed out and
focused on one of the most prominent fields, computer vision, as an
example. Inspecting papers published in different periods (Fig. 7(B2)),
they found that generally, science citations and novelty had positive
relationships with patent citations, whereas the disruption score was
negatively correlated with patent citations. “These results are consistent
with our recent findings [77]. Papers that are highly valued within
science also see greater practical uses. At the same time, these results
also raise new research questions regarding the relationships between
novelty, disruption, and patent citations.”

Overall, these cases demonstrate the effectiveness of our system in
navigating multiple dimensions of data and uncovering new insights.
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6.3 Expert Interview
We collected feedback from experts in Section 3.1 and interviewed six
external experts who had used InnovationInsights for the first time. PA
and PB are innovation managers in the TTO of a university. PC and PD
are researchers in SciSci. Although the target users of InnovationIn-
sights are the above two groups, the dataset in case 2 may also interest
VIS researchers. Thus, we also included two VIS researchers (PE and
PF ) who have three-year visualization expertise. Each interview with
an external expert lasted about 90 minutes. We first briefly introduced
the project background, including the analytical tasks and data sources.
Then we used case 1 in Section 6.2.1 to demonstrate the system work-
flow and visual encodings. Third, they were asked to explore the system
in a think-aloud manner. Finally, we had a semi-structured interview.
We took notes on their comments and findings during the process. The
feedback from the two groups of experts is summarized below.

System Workflow. All experts appreciated the clear workflow. They
were able to learn the system logic quickly, from researcher identifi-
cation to paper-patent citation exploration. We also observed diverse
analysis focuses between experts from different fields. Innovation
managers from the TTO focused more on researchers and their re-
search fields, while SciSci and VIS experts tended to start directly with
scientific fields. As PC said, “we are more interested in the general find-
ings over scientific fields.” Nevertheless, they agreed that the current
workflow was able to meet different needs through filtering schemes.

SciSci Metrics and Prediction Model. All of the experts showed
interest in these metrics. Those from the TTO were particularly in-
terested in the P-index obtained from the prediction model. PB was
excited about this straightforward approach to locating faculty with
high commercialization potential. EA suggested making the prediction
more transparent to help them understand the mechanism behind the
prediction. PE and PF found metrics such as team size and novelty in-
teresting, “these metrics provide us new perspectives to look at papers
besides paper citations.”

Visualization and Interactions. The experts noted that the visual
components in the system were intuitive and satisfied all the analytical
tasks. Many of them appreciated the Interplay Graph. EA and PF
reported that it took some time to understand the encoding, but it even-
tually became very useful and intuitive. PC especially appreciated the
y-axis in the paper matrix, as she could locate papers with high patent
citations more quickly. PB and PE liked the Technology Inspection View
and also suggested, “it would be more interesting if we could check
the relationships between these assignees.” PC and PF liked the glyph
design, “it makes the comparison between paper groups much easier.
But it would be great if labels could be added to show the meaning of
dimensions.” EA also mentioned the timeline as important to check
recent hot areas as a temporal indicator of innovation potential.

Suggestions. Despite universities and research fields, ED also
wanted to filter researchers at the regional level to compare innovation.
EA suggested using text analysis to reveal more detail about paper-
patent citations, such as the distinction between strong citations (i.e.,
cite the core knowledge in the paper) and weak citations (i.e., cite a
paper in the background).

7 DISCUSSION

This section discusses the significance and generalizability, lessons
learned, and limitations of our work.

Significance and Generalizability. Science provides a foundation
for many practical applications in human society, but the pathway
through which basic understanding leads to technological development
is neither visible nor intuitive. Consider Einstein’s theory of general
relativity, deemed as the discovery of the 20th century. Among the
myriad innovations it spurred, it proved essential for the Global Po-
sitioning System (GPS) through time dilation corrections. The GPS
system then provided the technical foundation for applications such as
Uber. The ability to effectively trace and visualize the evolving dual
frontiers of science and technology is therefore crucial to understanding
how science drives practical applications and leads to rising standards
of living. Our system not only fulfills our original design purposes,
allowing users to better identify the sources of technical inventions and
understand the holistic impact of scientific research; it also enables
an array of new applications for researchers and research institutions,

ranging from identifying untapped innovation potentials within an in-
stitution to forging new partnership opportunities between science and
industry. Moreover, the proposed SciSci metrics, prediction model,
and visualization system can be adapted for studying other upstream
(e.g., funding) and downstream (e.g., policy documents) linkages to
science [77]. When adapting the system to other domains, we suggest
replacing the patent data with other upstream or downstream data and
refining the metrics and prediction model to suit specific scenarios.

Lessons Learned. The design study with experts from multiple
fields provides valuable insights into conducting interdisciplinary re-
search. First, regularly discussing data insights with experts substan-
tially accelerates progress through timely clarifications of analytical
goals. We started with exploratory analysis and used static charts to
discuss initial findings. This practice helped us quickly verify insights,
facilitating adjustments to our analytical goals. Moreover, the initial
findings also inform experts about their practice. During the process,
our experts identified researchers with high commercialization poten-
tial (Section 6.2.1) and helped them to submit invention disclosures.
Second, the visual design of data with a complex structure requires in-
volving multiple design choices. Experts often lack clarity on the level
of detail the data should be presented, generally desiring maximum
information. It is helpful to offer alternatives at varied granularities and
prioritize data dimensions based on their importance for analysis goals.

Limitations. Our system is not without limitations. First, the current
prediction model relies on citations between papers without considering
those between papers and patents. Future work may use other GNN
models designed for heterogeneous graphs, which can incorporate
different types of nodes (e.g., papers and patents). In addition, the P-
index, derived from a GNN model trained on papers published between
2001 and 2014, can be improved by expanding the training dataset with
recent papers. We also plan to keep collaborating with TTO experts
for model validation and enhancement. Second, due to restrictions on
data availability, the scope of our study is limited to a single university
or specific field with patent data from the USPTO. Future research
may find patent data worldwide and extend the partnership to other
universities in order to encompass a wider innovation landscape. Third,
the current system exhibits some latency when computing results in
real time, particularly with large datasets. We intend to resolve this
issue using progressive visual analytics [7, 29]. Lastly, to ensure the
system’s long-term utility, we plan to regularly maintain the system
and the model with the most recent data (e.g., OpenAlex [2]).

8 CONCLUSION AND FUTURE DIRECTIONS

This paper presents InnovationInsights, a first-of-its-kind visualization
system for researchers and research institutions to explore the complex
interactions between science and technology. It supports analyzing mul-
tiple entities (e.g., researchers, papers, and patents) through descriptive
and predictive analyses. Coordinated views with intuitive interactions
are developed to support analysis. Two case studies, expert interviews,
and our engagement project with a partner university demonstrate the
substantial utility and potential impact of our system. In the future, we
plan to integrate more data and release an online system for public use.

This work opens up several fruitful future directions, especially at
the intersection of data visualization and the science of science. For
example, beyond understanding the impact of science on technolog-
ical development, visualization approaches would prove fruitful for
analyzing the broad uses of science across several crucial downstream
applications in society, tracing how science is used in the hallways of
governments through science-policy linkages, as well as how science
enables life-saving drugs and therapeutics by incorporating clinical
trials data. Further, data visualization techniques can also help us bet-
ter understand the multi-dimensional impacts of funding on scientific
progress and individual careers. Developing novel and efficient visual
analytics systems to analyze large-scale data, spanning from upstream
funding to science to downstream applications, will usefully serve a
diverse range of stakeholders, including university leaders, private com-
panies and investors, funding agencies, policymakers, and researchers
themselves. Given the crucial role of science in improving the human
condition, such systems have the potential to unlock enormous value
for science—and for society at large.
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