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Evaluation of Graph Sampling: A Visualization Perspective
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Figure 1. Comparison between two sampling strategies: (a) The original graph, (b) the graph sampled using Random Walk, and (c)
the graph sampled using Forest Fire. The upper right corner of each subfigure shows the degree distribution. Subfigures (b) and (c)
have similar degree distributions and an average degree of 2.4. However, the resulting visualizations of the samples are extremely
different, indicating that the sampling strategy chosen can greatly influence the visual features present in the graph.

Abstract— Graph sampling is frequently used to address scalability issues when analyzing large graphs. Many algorithms have been
proposed to sample graphs, and the performance of these algorithms has been quantified through metrics based on graph structural
properties preserved by the sampling: degree distribution, clustering coefficient, and others. However, a perspective that is missing is
the impact of these sampling strategies on the resultant visualizations. In this paper, we present the results of three user studies that
investigate how sampling strategies influence node-link visualizations of graphs. In particular, five sampling strategies widely used in
the graph mining literature are tested to determine how well they preserve visual features in node-link diagrams. Our results show
that depending on the sampling strategy used different visual features are preserved. These results provide a complimentary view to
metric evaluations conducted in the graph mining literature and provide an impetus to conduct future visualization studies.

Index Terms—Graph visualization, graph sampling, empirical evaluation

1 INTRODUCTION

As we enter the big data era, our capacity to collect and store net-
works has provided unprecedented opportunities to gain insight into
our world. For example, as of late 2015, Facebook reported 1.6 billion
monthly active users. Researchers can validate the “six degrees of sep-
aration” theory [36] and explore patterns in communication by analyz-
ing social networks, such as Facebook. However, large-scale networks
also pose unprecedented challenges to the fields of data mining and
visualization. Graph mining algorithms typically exhibit high compu-
tational complexity. Graph visualization methods are also inherently
limited by the complexity of algorithms used, screen space, visual clut-
ter, and human perceptual capabilities when reading the data.

Many algorithms have been designed to address this scalability is-
sue [22, 44]. Sampling is a commonly used technique in both data
mining [35] and visualization [16, 45] because of its simplicity and ef-
ficiency. A number of sampling strategies have been developed, which
range from simple node-based to advanced traversal-based schemes,
have been developed based on different statistical models. Graph min-
ing experts have evaluated the performance of these sampling strate-
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gies [35, 41] through metrics quantifying the topological properties
preserved. These results have determined that no single strategy can
preserve all the structural properties of the original network. Thus,
guidelines have been proposed for selecting an appropriate graph sam-
pling algorithm [32, 41].

Although sampling techniques have been thoroughly evaluated in
the graph mining community, these studies have only considered the
perspective of metrics (e.g. degree distribution and clustering coeffi-
cient) [35]. An important perspective that has not been considered is
how the graph sampling affects the perception of graph visualizations.
Such effects cannot be studied through metric evaluations alone. For
example, often as part of a graph visualization task, a user may need to
identify nodes with an abnormally high number of connections. Met-
ric evaluations quantify how many original high degree nodes remain
after sampling, but whether these nodes will still be perceived as high
degree by a human user remains unknown. As another example, con-
sider Fig. 1: In this figure, (a) shows the unsampled graph, whereas
(b) presents Random Walk sampling, and (c) presents Forest Fire sam-
pling. The two sampled graphs both preserve the power-law degree
distribution of the original graph and have the same average node de-
gree of 2.4. However, these graphs are visually different. Thus, the
sampling algorithms may not influence the visualization equally in a
perceptual sense, and studies are required to investigate this effect.

In this work, we study the influence of sampling strategies on node-
link visualizations. In particular, we raise two research questions:

• What are the visual factors that must be retained to make sam-
pled graphs representative from the perspective of visualization?

• How do sampling strategies preserve these visual factors?
For the first question, our pilot study finds that three visual factors

significantly influence the representativeness of sampled node-link di-
agrams: cluster quality, high degree nodes, and coverage area. Tar-
geting these visual factors, we conduct three experiments to evaluate
the influence of sampling strategies on the perception of these visual
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factors. Evaluating all the algorithms is impractical for graph sam-
pling because many algorithms have been proposed. Thus, we con-
duct a comprehensive survey of these algorithms and select five pop-
ular sampling strategies from the literature: Random Node, Random
Edge Node, Random Walk, Random Jump, and Forest Fire. In addi-
tion, we discuss the differences between the findings of our studies
and compare them to those in the graph mining literature. Our results
show that Random Edge Node sampling and Random Jump best pre-
serve global structure and cluster quality, whereas Random Walk helps
users perceive high degree nodes. The performance of Random Walk
and Forest Fire sampling is also sensitive to increased modularity.

2 RELATED WORK

2.1 Node-Link Diagrams
Graph visualization is an active research area [25, 39, 49]. Node-
link diagrams are among the most popular techniques for visualizing
graphs because these diagrams are intuitive and space-efficient. How-
ever, previous research [19] has shown that the readability of node-link
diagrams decreases with increasing size or density because of elevated
visual clutter and occlusion. To increase the scalability of node-link
diagrams, various techniques have been proposed which can be classi-
fied into two major categories: clustering and filtering.

Graph Clustering. Graph clustering methods abstract away groups
of nodes and edges to reduce the visual complexity of the graph. In
particular, node-based methods frequentely organize a graph into hi-
erarchical structures by merging neighboring nodes together. For ex-
ample, ASK-GraphView [1] enables users to explore a hierarchically
organized network. Muelder and Ma [44] adopted treemaps to hierar-
chically organize graphs, so that they can be efficiently mapped onto
2D layouts. GrouseFlocks and TugGraph [4, 5, 6] support interactions
to add and remove aggregated nodes on demand, which provides users
with more flexibility to organize node clusters. Vehlow et al. [48]
represented communities as abstract nodes and highlighted nodes be-
tween communities through partially aggregated graphs. Zinsmaier
et al. [52] introduced a graph rendering technique, based on kernel
density estimation, to efficiently cluster nodes. Glyphs are also widely
used as a space-efficient way to represent multiple types of community
information [11, 51]. Although these methods reduce the number of
nodes, edge density may be higher than that in the original graph [30].

Edge-based clustering methods focus directly on the over-plotted
lines in node-link diagrams. The nodes in these approaches are not
hidden or aggregated in visualizations. Instead, edges with similar di-
rections are visually bundled together in order to reduce edge crossings
and emphasize directional patterns [18, 29]. Edge similarities in exist-
ing approaches are typically determined via explicit hierarchies [26],
control meshes [13], force systems [27], clustering methods [18], and
other approaches.

For example, Holten and van Wijk [27] applied attractive forces
between edges to curve them into bundles. Gansner et al. [18] adopted
multilevel clustering techniques to increase the scalability of bundling
techniques. The main disadvantage of these approaches is that edge
bundles can change the semantics of graphs and may fail to reflect the
properties of the original graph structure.

Graph Filtering. Filtering-based methods preserve graph seman-
tics by extracting subgraphs from an original graph. Stochastic and
deterministic are two common types of filtering used in visualiza-
tion [49]. Stochastic filtering, or sampling, randomly selects nodes
or edges from a graph. Rafiei and Curial [45] compared the perfor-
mance of three basic sampling strategies for large graph visualization.
By contrast, deterministic filtering removes nodes and edges based
on specific topological properties. For example, Jia et al. [30] fil-
tered graphs by removing edges with low betweenness centrality, thus
preserving connectedness and other graph features, such as cliques.
Hennessey et al. [24] also adopted graph metrics, such as number of
shortest paths and distance to the central node, to simplify graphs and
obtain representative skeletons.

Deterministic methods often require some knowledge about the
data and predefined thresholds. By contrast, stochastic filtering meth-
ods do not hold underlying assumptions about the data and are preva-

lent in the graph mining literature. Thus, we focus on stochastic filter-
ing methods (i.e., sampling) in this study.

2.2 Graph Sampling Strategies
Graph sampling techniques randomly select nodes or edges to con-
struct a subgraph that represents the original unfiltered graph. These
methods have been studied in many fields, including statistics [23],
data mining [22], and visualization [45]. To preserve particular graph
properties for domain-specific goals, many sampling methods have
been proposed [28]. These sampling techniques can be categorized
into three main groups: node-based, edge-based, and traversal-based.

Node-Based Sampling. Random Node (RN) sampling [35] is the
most common method; it selects a set of nodes uniformly at random
from the graph. Using this set, an induced subgraph can be created
by including every edge that connects a pair of nodes in the set. Al-
though RN is simple and efficient, Stumpf et al. [47] demonstrated
that it would not always preserve degree distribution in scale-free net-
works. Instead of sampling uniformly, advanced node-based methods
select nodes with different probabilities based on graph properties. For
example, in Random Degree Node (RDN) sampling [35], a node is se-
lected with a probability that is proportional to its degree. Thus, RDN
favors high degree nodes.

Edge-Based Sampling. Random Edge (RE) sampling [35] gen-
erates an induced subgraph by selecting edges uniformly at random.
Several variants of RE exist. For example, Random Node-Edge (RNE)
sampling [35] randomly selects a node and then randomly chooses an
adjacent edge. Random Edge-Node (REN) sampling [45] first obtains a
set of nodes from a uniform set of random edges. An induced subgraph
is then computed by adding all the edges whose nodes are present in
this set. Previous studies [35] have demonstrated that neither RE nor
RNE preserves community structures because the resulting sampled
graphs are often sparsely connected. Meanwhile, both RE and REN
slightly favor high degree nodes because the probability of selecting a
node increases with its degree.

Traversal-Based Sampling. Given the limitations of node-based
and edge-based methods, researchers have investigated a third cate-
gory of sampling techniques: traversal-based sampling. These meth-
ods are also known as topology-based sampling or sampling by ex-
ploration. An advantage of these methods is that connected graphs
remain connected after sampling. Depth First (DF) and Breadth First
(BF) sampling are two basic traversal-based sampling methods [14].
Starting from a randomly chosen node, DF selects nodes in depth first
order [12]. Similarly, BF selects nodes in breadth first order [12]. In
both DF and BF, only the starting node is randomly selected and the
rest of the process is deterministic. Previous studies [31] have shown
that BF and DF favor nodes with high degree and high page rank.
Snow-Ball (SB) sampling, which is similar to BF, selects a fixed frac-
tion of neighbors visited at each iteration. Lee et al. [34] suggested
that SB suffers from a boundary bias, thereby making peripheral nodes
(i.e., nodes sampled in the last round) miss a number of neighbors.
Forest Fire (FF) sampling [37] is a probabilistic version of SB that
randomly selects a seed node with incident edges and adjacent nodes
getting “burned” away recursively with a probability p.

Another popular traversal-based sampling approach is Random
Walk (RW) sampling [40]. Starting from a randomly selected node,
RW selects the next node at random from the neighbors of the cur-
rently selected node. A problem occurs in RW when the graph has
multiple connected components. In this case, components that do not
contain the starting node will never be sampled. Random Jump (RJ)
sampling circumvents this problem by randomly jumping to another
node in the graph with a certain probability in each iteration. In gen-
eral, RW and RJ favor high degree nodes.

A number of studies have evaluated the performance of these al-
gorithms by measuring the properties of sampled graphs [3, 35, 41].
For example, Maiya and Berger-Wolf [41] evaluated several traversal-
based sampling methods via measuring degree, clustering, and net-
work reach. Ahmed et al. [3] extended these metrics and applied
them to streaming graphs. However, these evaluations have all been
performed from the perspective of metrics. The effect of these strate-
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gies on the perception of node-link visualizations remains unknown.
As graph mining becomes commonplace, this effect must be under-
stood in the context of the visualizations. In this work, we aim to fill
in this gap by conducting a study that directly addresses this question.

3 DEFINITIONS AND PRELIMINARIES

In this section, we present the definitions used in this paper and intro-
duce the sampling strategies and data used in our study.

3.1 Notations and Definitions
Based on previous graph sampling studies [3, 35, 41], we adopt the
following notation:

• A graph or network is represented by G = (V,E) with the node
set V = {v1,v2, . . . ,vN} and the edge set E ⊆ V ×V . N = |V | is
the number of nodes.

• A node sample S is a subset of the nodes of G, S⊂V .
• A sampled graph GS = (S,ES) is the induced subgraph of G

based on a node sample S = σ(G) using sampling strategy σ

with node set S⊂V and edge set ES = (S×S)∩E.
• A sampling rate φ = |S|/|V | is the percentage of node sampled

S from V .

3.2 Sampling Strategies
Given the number of sampling strategies that exist, it is prohibitive to
evaluate all of them. Thus, we choose five methods based on a survey
of related work. Specifically, we select Random Node (RN), Random
Edge Node (REN), Random Walk (RW), Random Jump (RJ), and Forest
Fire (FF). These methods cover the three major sampling categories
defined by Hu and Lau [28]. For node and edge based sampling, we
choose the most popular techniques [41, 47]. For traversal-based sam-
pling, we evaluate all the three techniques selected by Leskovec and
Faloutsos [35] because they differ substantially.

Node-Based Sampling. RN is selected as it is the most commonly
used method for this category [9, 47]. RN selects a uniform set of ran-
dom nodes and includes all the edges between any pair of nodes in this
set. Thus, RN preserves node distributions because nodes are selected
with equal probability. However, RN does not always preserve the
degree distribution for scale-free networks [47]. This study can help
understand the impact of this drawback on node-link visualizations.

Edge-Based Sampling. RE is the most basic edge-based sampling
technique, but REN is more frequently used in metric studies [35, 41].
REN collects a random set of edges and the induced subgraph of the
nodes present in this set. Thus, REN is selected from the edge-based
sampling techniques to align with previous studies in graph mining.

Traversal-Based Sampling. Traversal-based sampling is a large
and diverse category of sampling techniques. Thus, we select three
representative schemes from this category: RW, RJ, and FF. These
three techniques were used in the evaluation conducted by Leskovec
and Faloutsos [35].

RW is the most commonly used traversal-based strategy [38]. It
starts by randomly selecting a node and then performing a random
walk on the graph from this node. However, RW cannot work directly
on graphs with multiple connected components and can get trapped in
dense clusters. A variant of this approach selects a node at random if
the random walk does not discover a new node after a fixed number
of iterations. In our experiments, we use the threshold proposed by
Leskovec and Faloutsos [35], which is 100∗ |V |.

RJ is a widely used variant of RW. In this strategy, the random
walker can jump to a random node u ∈ V with probability c. In this
study, we set c = 0.15: a value used in previous studies [35]. RJ par-
tially circumvents the drawbacks of RW. However, RJ favors high-
degree nodes and dense components. Although existing work [35]
shows that RJ has a similar performance to RW, RJ is selected to de-
termine if this property holds from a perceptual perspective.

FF is also selected. Unlike RW and RJ, FF does not favor high-
degree nodes. FF avoids selecting nodes that are previously traversed
by the algorithm, which causes it to behave differently. FF uniformly
selects a random seed node and “burns” its x adjacent edges. The
value of x is a geometrically distributed random number with a mean

of p f /(1− p f ). In this work, p f is set to 0.7, which is the value used
in the graph mining literature [35]. After burning the edges, the end-
points are collected and the process is repeated until sufficient nodes
have been visited.

BF, DF, and SB are deterministic, and thus, are excluded from our
evaluation because these methods significantly depend on the starting
node selected.

3.3 Graph Types and Layout Algorithms

Most real-world networks, such as social networks and biological net-
works, have a heavy-tailed degree distribution. Barabási and Albert [7]
found that many of these “scale-free networks” share similar charac-
teristics. First, the node degrees of scale free networks typically fol-
low a power law, and a few nodes in these networks with considerably
high degree. Also, these networks generally include central nodes that
bridge two or more densely connected clusters. Due to their preva-
lence, many evaluations have been conducted to understand the prop-
erties of scale-free networks [21, 32, 34]. We also focus on scale-free
networks in this study to stay aligned with the existing literature.

As our study focuses on the perceptual effect of sampling tech-
niques, we need to control for the graph layout in our experiments.
Many techniques have been proposed to produce graph layouts with
good readability. In our study, we choose the approach of Dwyer [15]
to achieve a good layout within a reasonable amount of time.

When developing a graph visualization system, graph sampling
can be used as pre-processing before producing a layout or as post-
processing to maintain a stable drawing when performing interactive
exploration. If we use graph sampling as pre-processing, the time re-
quired for generating layouts is reduced. On the other hand, by sam-
pling as a post-process, visual features present in the unsampled graph
have the potential to be more readily preserved. For example, preserv-
ing node relationships is hard in a sampled graph as the incident edges
can be filtered out. However, as many graph layout algorithms, such
as force-directed methods, often place nodes in the same cluster close
to each other, node relationships can be estimated by the distances be-
tween nodes. By keeping the node positions, people can infer node
relationships even with few edges remained after sampling. Also, the
experiments can be better controlled by avoiding potential layout con-
found effect. For these reasons, we draw the graph first and apply
sampling as a post-process in our experiments.

4 PILOT STUDY

This study aims to understand the effect of our five sampling strategies
on the perception of node-link visualizations. As there is no prior work
on the topic of how important visual factors can affect graph similarity
perception, we first conducted a pilot study to identify the important
visual factors that should be preserved by graph sampling. This pilot
study also helped determine a universal sampling rate, allowing us to
fairly compare across data sets and techniques.

4.1 Participants and Apparatus

We recruited 10 participants (7 males, 3 females; aged 23-29 years,
median: 25) for this study. All participants were students with a com-
puter science background in our local university. The study was per-
formed on a laptop computer with an external 23-inch display with a
resolution of 1920 × 1080 pixels and 60 Hz refresh rate. Each partic-
ipant took approximately 20 minutes to complete the pilot study.

4.2 Testing Data

In our pilot study, we used five real-world graphs (Table 1): a
power-grid network (PowerGrid [50]), a hyperlink network (Politi-
calBlogs [2]), and three social networks (Google+ [42], ResidentRat-
ing [17], and AdolescentHealth [43]). Graph generation models ran-
domly insert specific patterns into graphs. As we did not want to bias
the participants towards these features when judging similarity, we
considered only real-world networks in our pilot study. All networks
were regarded as undirected and unweighted graphs.
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Network N D AD CC PL

ResidentRating (RR) 217 0.1002 21.6 0.50 1.9
PoliticalBlogs (PB) 1,222 0.0220 27.4 0.32 2.7

AdolescentHealth (AH) 2,539 0.0054 13.7 0.33 2.3
PowerGrid (PG) 4,941 0.0005 1.3 0.08 19.0
Google+ (G+) 23,613 0.0001 3.3 0.17 4.0

Table 1. Network properties of the five data sets, where N is the number
of nodes, D is the graph density, AD is the average degree, CC is the
local clustering coefficient, and PL is the average shortest path length.

Figure 2. Pilot study interface. Original unsampled PG is visualized
(top-left) with sampled versions at the following rates: 5%, 10%, 20%,
30%, and 40%. In this figure, PG is sampled with Random Walk.

4.3 Study Conditions
We used a within-subject design with three factors: data sets, sampling
strategies, and random seeds for sampling strategies (Table 2).

5 real-world data sets (RR, PB, AH, PG, G+)
5 sampling strategies (RN, REN, RW, RJ, FF)

× 3 random seeds (3 different seeds)

75 trials per participant
× 10 participants

750 trials in total

Table 2. Conditions of pilot study and number of trials.

All participants viewed samples involving the same random seeds to
ensure a fair comparison. The study began with a questionnaire about
the participant’s background. Then we explained the requirements and
procedure to the participant. During this stage, the participants were
encouraged to ask questions if they encountered problems. The study
trials were divided into five blocks: one for each data set. The data
sets were randomized within each block and the study blocks were
counterbalanced using Latin squares.

4.4 Tasks and Procedure
This pilot study aims to collect two pieces of information to be used by
the formal studies: a fixed sampling rate to be used by all the strategies
and the visual factors to be investigated in the study.

T1: Determining the appropriate sampling rate. Sampling rate
is an important parameter that significantly influences the sampling
results. We assume that a “good” sampling technique can preserve
the visual properties of graphs at a low rate when compared with a
“bad” one. Therefore, we aim to find a sufficiently low sampling rate
to distinguish the performance of these strategies without making the
sampled graphs completely unidentifiable. For example, sampling a
graph with a rate of 5% will produce an extremely sparse result, mak-
ing comparisons with the original unsampled graph unnecessarily dif-
ficult. An existing study [37] suggested that sampling rates over 50%
cause the strategies to behave the same. Therefore, in our pilot study,
we test a set of sampling rates: 5%, 10%, 20%, 30%, and 40%, to
identify an acceptable rate to use in the formal study.

T2: Identifying the most influential visual factors. In the pilot
study, we also aim to identify important visual factors that influence
the representativeness of the sampled graphs. Lee et al. [33] listed

Figure 3. T1 results. This chart shows the percentage of votes for each
sampling rate grouped by data set.

Figure 4. T2 results. This chart shows the number of votes for each
visual factor and the vote distributions grouped by data set.

ten fundamental graph visualization tasks. Among them, we consider
two tasks that do not have a numerical ground truth and heavily rely
on human perception:

• Anomalies: graph elements that have extreme statistical values.
• Clusters: graph elements that share similar attribute values.

Other tasks, such as path finding, that could be performed by using
automatic methods are excluded in this study. We compiled a list of
eight different visual factors (Table 3) drawn from this category. We
considered three types of anomalies: high degree nodes (HN), mar-
gin nodes (MN), and boundary nodes (BN). High degree nodes are the
nodes that have considerably high degree compared with the average
degree of the data set. Margin nodes are the nodes of considerably low
degree that are not central to the graph structure. Boundary nodes are
the nodes that bridge between two or more clusters in the data. Con-
sequently, an edge that participates in a HN, MN, or BN relationship
is considered an edge level anomaly of its corresponding type. Cluster
quality (CQ) is also selected since clusters play an important role in
terms of landmarks in graph analysis. Moreover, we include the “cov-
erage area” (CA) as an overview task (Lee et al. [33], Section 4.4) as
graph shape in the drawing can largely influence graph similarity per-
ception. CA is defined as the overview of global structure provided by
the sample when compared to the original unsampled graph. One can
view it as the shape of the graph or the amount of area covered by the
node-link diagram. In Fig. 2, when the sampling rate increases, we can
observe a larger CA as the original graph’s outline becomes clearer.

Network Level Node Level Edge Level

Coverage Area (CA) High Degree Nodes (HN) Edges Linking HN
Cluster Quality (CQ) Margin Nodes (MN) Edges Linking MN

Boundary Nodes (BN) Edges Linking BN

Table 3. The eight visual factor candidates that may influence the per-
ceived representativeness of the sampled graphs.

For each set of study factors, we produced five sampled graphs us-
ing rates of 5%, 10%, 20%, 30%, and 40%. The corresponding orig-
inal graph and the sampled graphs were visualized in a 2 × 3 grid
(Fig. 2). No rotation or scaling was applied as each graph was pre-
sented once. All the graph samples were presented simultaneously.
The original unsampled graph was presented in the top-left corner, and
the sampled graphs were shown in the remaining grid cells. The partic-
ipants were asked to select the lowest sampling rate that still preserved
the unsampled graph structure. Simultaneously, the participants were
required to name visual factor(s) that most influenced their decisions
from the options listed in Table 3. The participants can enter their own
visual factors if they are not listed. An informal post-study interview
was conducted to understand the reasoning behind their selections.
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4.5 Results and Discussion
Fig. 3 shows the results of T1. Generally, a small sampling rate was
selected when the graph was large In particular, approximately 40%
of the votes were given to either 5% or 10% rates for G+, which was
the largest testing testing graph. By contrast, no participant believed
that a sampling rate below 20% would be useful for RR, which was the
smallest testing graph. An exception was PG, where a higher sampling
rate was preferred despite its size. The post-study interview indicated
that even for large sampling rates, a large area of PG was missed when
using certain sampling strategies (Fig. 2), causing poor perceived cov-
erage area. A possible explanation is the low clustering coefficient and
high average shortest path length in this data set.

Compared with previous works, which either simply suggest a
“one-size-fits-all” sampling rate [8] or describe strategies for select-
ing an appropriate sampling rate [41], the present study shows that
the lowest acceptable rate, from a perceptual perspective, depends on
graph properties, such as graph size and structure. To conduct a fair
comparison among all strategies across data sets, we chose to fix the
sampling rate. Our pilot study determined that a sampling rate of 20%
or 30% could maintain the shape of graphs with a thousand or more
nodes. Thus, to best discriminate among the different strategies, we
selected a sampling rate of 20% for our formal study.

Fig. 4 shows the number of votes for each of the visual factors in
our pilot study. Many of these visual factors could have been chosen
for our experiment, but in order to have a focused study we select the
three most important factors as judged by our participants. Therefore,
in the next section, we present the results of three formal experiments
based on the top three visual factors found by our pilot study: high
degree nodes, cluster quality, and coverage area.

5 FORMAL STUDY

We aim to understand the effects of the five aforementioned sampling
strategies on the three visual factors identified in our pilot study. Thus,
we conducted three controlled experiments to test the effects of these
strategies on these visual factors respectively.

5.1 Experiment I: Perception of High Degree Nodes
This experiment focuses on how sampling influences the perception
of high degree nodes in the graph. Nodes with more incident edges
are visually salient in node-link visualizations. However, sampling
can influence the perception of these nodes by changing node degrees
in a graph. The influence of sampling on node degree distributions
has been considered in earlier works. However, no study has yet been
conducted on how graph sampling influences the visual prominence of
high degree nodes.

Hypotheses. Although the four sampling strategies, namely, REN,
RW, RJ, and FF favor high degree nodes, we believe that RW can best
preserve the visual prominence of these nodes. By visual prominence,
we mean that if a node is considered high degree in the graph, it should
still be perceived as a high degree node in the sample. The walker used
by RW can be easily trapped inside dense local structures and has to
move restrictively between adjacent nodes. Therefore, the incident
edges of a high degree node have a higher probability to be selected,
which enables the high degree nodes to retain more edges and be more
identifiable. Although REN, RJ, and FF also favor high degree nodes,
their incident edges are more likely to be filtered out. We conjecture
that these nodes could be perceived as of lower degree after sampling.
We also conjecture that RN is unlikely to preserve high degree nodes
as it selects nodes randomly and uniformly. Finally, we believe this
performance holds across all the data sets. Thus, we have the following
hypotheses:
H1 It will be easier to perceive high degree nodes in the samples

produced by RW.
H2 It will be more difficult to perceive high degree nodes in the sam-

ples produced by RN.
H3 H1 and H2 hold across data sets.

Testing Conditions and Data Generation. We conducted a
within-subject study to compare the five sampling strategies. Four
additional factors were considered in the experiment, namely, graph

N: 1024, D: S N: 2048, D: S

N: 1024, D: L N: 2048, D: L

Figure 5. Four scale-free networks generated by Barabási-Albert model.
Two graph sizes and two average degrees of high degree nodes are
shown. The top 1% nodes of high degree nodes are highlighted.

2 graph sizes (small=1024 nodes, large=2048 nodes)
2 average degrees of high degree (small, large)
5 sampling strategies (RN, REN, RW, RJ, FF)
3 random seeds (3 different seeds)

× 3 repetitions

180 trials per participant
× 20 participants

3,600 trials in total

Table 4. Conditions of Experiment I and the total number of trials.

size, average degree of the high degree nodes, sampling strategy, and
random seeds (Table 4).

We create the test data sets (Fig. 5) using the Barabási-Albert
model [7], a widely adopted scale-free network generator. This gener-
ator guarantees that nodes of high degree are embedded into the graphs
that produce our stimuli. This model has two parameters: the number
of nodes and the average node degree. A pilot study with four partic-
ipants was conducted to determine the appropriate parameters to use
in the experiment. Two graph sizes, i.e., 1,024 nodes for small and
2,048 nodes for large, were selected so that they would be visible on
the screen while still having distinct high degree nodes. The average
node degree was set to two to avoid unnecessary visual clutter.

To determine the two levels of the average degree for high degree
nodes, we randomly generated 100,000 graphs for each size (1,024
nodes and 2,048 nodes). For each graph, the top 1% of nodes with high
degree were considered high degree nodes. The graphs were sorted by
the average degree of this 1% from smallest to largest. For the small
and large graph data sets, two graphs were randomly selected from
the first and last third of this sorted list as having “small” and “large”
average high degree. Thus, four data sets were used (2 graph sizes ×
2 average high degree) for our experiment (Fig. 5).

Task and Procedure. This experiment aims to test if high degree
nodes in the original data sets are still perceived as high degree nodes
in the samples produced by each sampling strategy. The participants
were required to compare the degree of the highlighted node to other
nodes in this graph and state if the highlighted node could be perceived
as high degree. Each stimulus was a sampled graph in which the entire
set of high degree nodes of the original graph were highlighted. As
all the original high degree nodes are highlighted, it limits priming
effects. If the participant still perceived a highlighted node as high
degree, he or she clicked on the node to report it. If the participant felt
that none of the highlighted nodes could be perceived as high degree,
they could click on a button to indicate this response.

The study began with a training session in which the participants
can familiarize themselves with the system and the task. The experi-
ment was divided into two blocks (large graph and small graph), each
consisting of 90 tasks. Trials were randomized within each block and
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Figure 6. The average number (bottom number of each column) of selected high degree nodes for each graph condition. Error bars indicate 95%
confidence intervals. Pairwise significant differences are indicated above each bar. Friedman test statistics appear at the bottom-right corners.

OverallN:1024, D: S N:1024, D: L

Number of High Degree Nodes Remained: Number of High Degree Nodes Perceived:

N:2048, D: S N:2048, D: L

Figure 7. The numbers of selected high degree nodes and actual high degree nodes for different sampling strategies under each graph condition.

blocks were counterbalanced between the participants. The stimuli
were mirrored and flipped to ensure a fair comparison and to avoid
memorization of previous answers. The entire experiment took ap-
proximately 30 minutes to finish, and the participants could rest after
finishing a study block.

Participants and Apparatus. We recruited 20 participants (8 fe-
males, aged 22 to 30 years (mean = 24.8, SD = 2.1)) with normal or
corrected-to-normal vision. All the participants were undergraduate
students, graduate students, or staff in the computer science depart-
ment of our local university. The study was conducted on a laptop
computer with an external 23 inch display with a resolution of 1920×
1080 and a refresh rate of 60Hz. The sampled graph was displayed in
a window with 1000 × 1000 pixels (26.5 cm × 26.5 cm). The high-
lighted nodes had a radius of 5 pixels and were black, whereas all the
other nodes had a radius of 2 pixels and were filled in gray. The high-
lighted nodes turned red when clicked. All the edges were gray lines
with a width of 1 pixel. Participants used a mouse for interaction.

Results. First, we analyzed the performance of the different sam-
pling strategies for all the graph conditions. To check for normality,
we ran the Shapiro-Wilk test. The result showed that the data was not
always normal. Thus, we use a Friedman test to determine the statis-
tical significance with a standard statistical level α = 0.05. Post-hoc
analysis was conducted with a Nemenyi-Damico-Wolfe-Dunn test.

We then analyzed how the strategies performed for each graph con-
dition. When dividing the data by graph size and average high degree,
we applied a Bonferroni correction, reducing the significance level to
α = 0.0125. The post-hoc analysis was conducted as above.

Fig. 6 shows the average number of selected high degree nodes with
pairwise significant differences indicated above each error bar. Signif-
icant differences were identified overall and for each graph condition.
Statistics related to these tests are reported in the bottom right corner
of each subfigure.

Discussion. Our results provide evidence that the sampling tech-
nique chosen influences how high degree nodes in the graph are per-
ceived in the sample. The participants tended to correctly perceive
high degree nodes in the samples produced by RW, confirming H1.
Fig. 7 compares the results of our experiment with counts of the num-
ber of high degree nodes that remain in the sample. In these counts,
REN preserves the most high degree nodes and RW the fewest. Our
experiment shows that for RW, however, most of these remaining high
degree nodes are still perceived as high degree by the participant. Al-

though other strategies may preserve more of these nodes, the partici-
pants tended not to perceive them as high degree.

A possible explanation is that RW often collects edges incident to
high degree nodes as it is not forbidden from revisiting previously se-
lected nodes. RJ, REN, and FF perform similar in this study. De-
spite preserving more high degree nodes than RW in terms of num-
bers (Fig. 7), these methods performed worse for various reasons. RJ
allows the walker to escape from “traps”, which causes the incident
edges of high degree nodes to be less likely selected. REN, an edge-
based strategy, does not favor the incident edges to high degree nodes.
FF does not allow node revisit, which also reduces the probability of
selecting the incident edges of high degree nodes. RN does not per-
form well in either experiment as all the nodes have the same probabil-
ity of being selected, which supports H2. This trend was seen across
all the four graph conditions, which also verifies H3.

In addition, all five sampling strategies have large confidence in-
tervals except for RN. From our post-study interview, we found that
participants often have different standards when identifying a node as
high degree. Some participants chose a constant value (degree 5 or
10) and considered anything above this threshold high degree. Others,
used different thresholds depending on the condition.

Our experiment provides evidence that the choice of sampling strat-
egy can influence the perception of high degree nodes in graph visual-
izations. This human centered perspective compliments the results of
metric experiments performed in the graph mining community.

5.2 Experiment II: Perception of Cluster Quality

A cluster is a group of densely connected nodes with only a few edges
that connect nodes from the cluster to nodes that are not in the cluster.
Clusters are more frequent in real-world graphs than in random graphs.
As clusters provide important visual landmarks, they should be pre-
served in node-link visualizations after sampling. However, different
sampling strategies may variably influence the node and edge distribu-
tions in different ways, thereby impacting the legibility of clusters in
sampled graphs. Existing work in the graph mining community [20]
studies clusters from the perspectives of metrics, such as modularity,
which can be complimented by perceptual studies. Thus, we conduct
an experiment to investigate the influence of sampling strategies on the
perception of clusters.

Hypotheses. Sampling strategies can influence the perception of
clusters in several ways. For example, RN may affect the identification
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of clusters by blurring the boundaries between clusters. By contrast,
RW and FF could get trapped inside the clusters when sampling and
leave other clusters out of the sample entirely. The performance of
RW and FF is likely to be affected by graph modularity, indicating
how easily a random walker can escape clusters. Thus, we have the
following hypotheses:
H4 REN and RJ will best preserve the perceived cluster quality in

sampled graphs.
H5 RN will struggle in preserving the perceived cluster quality.
H6 The performance of RW and FF likely depends on modularity

and is independent of graph size.
Testing Conditions and Data Generation. We conducted a

within-subject study to compare the five sampling strategies. Three ad-
ditional factors were tested: graph size, modularity, and random seed
selection (Table 5).

2 graph sizes (small=1024 nodes, large=2048 nodes)
2 graph modularities (low, high)
3 random seeds (3 different seeds)

× 3 repetitions

36 trials per participant
× 20 participants

720 trials in total

Table 5. Conditions of Experiment II and the number of trials.

Since this experiment focuses on cluster quality, cluster number and
modularity are two important factors. Accordingly, we chose Sah et
al.’s model [46], which could explicitly specify the number of clusters
to embed into the graph along with an estimate of graph modularity, to
generate our graphs. As a particular number of clusters are guaranteed
to be present in the original graph, we can use this data to generate our
stimuli. Similar to Experiment I, we conducted a pilot study with four
participants to determine the other graph parameters. The same graph
sizes used in Experiment I (1024 nodes and 2048 nodes) were used.
The number of clusters for the large and small graph sizes were set to
eight and four, respectively. High and low modularity levels for the
experiment were set to 0.5 and 0.15, respectively. Thus, four graphs
(2 graph sizes × 2 graph modularities) were generated and used by all
participants (Fig. 8). These graphs, in turn, were sampled by our five
strategies to create our stimuli.

Task and Procedure. It is difficult to judge the perceived quality of
cluster preservation without a reference graph. Thus, the participants
were presented with a 2×3 matrix of visualizations (similar to Fig. 2)
for each trial. The upper left illustration showed the original graph.
The remaining five illustrations presented the sampled graphs induced
by the five sampling strategies. The participant was asked to rate each
sampled graph using a five-point Likert scale, indicating how well the
clusters were preserved.

Participant information was already collected in Experiment I.
Thus, we directly started this study with a training session. During
this session, we provided a brief description of the task and provided
four practice trials. Each practice trial had a unique graph size and
modularity. During this phase, we provided several candidate factors
to the participant that might influence cluster quality, including cluster
size, number, and density. Participants were instructed to determine
the priorities of these factors on their own during the experiment.

The trials were divided into two blocks by graph size. These blocks
were counterbalanced between participants. Each block contained
2×2×3 trials. The trials within each block were randomized to coun-
teract learning a fatigue effects. The stimuli were mirrored and flipped
to ensure a fair comparison and to avoid memorization of previous an-
swers. Participants could take a break between blocks. On average, the
experiment took about 15 minutes to complete. After the experiment,
an informal interview was conducted to investigate which factors that
played important roles in the perception of cluster quality.

Participants and Apparatus. The same participants were re-
cruited, and the same devices were used in this experiment as those
in Experiment I. The node-link visualizations of the original and the
five sampled graphs were displayed in a 2× 3 matrix. Each window

N: 1024, M: L N: 2048, M: L

N: 1024, M: H N: 2048, M: H

Figure 8. Four scale-free networks generated by Sah et al. [46]’s model
based on graph size and modularity.

was in 500×500 pixels (13.3cm×13.3 cm). Nodes were colored gray
and had a radius of two pixels. Edges were colored gray and had a
width of one pixel. The participants used a mouse for interaction.

Results. The rating scores did not follow a normal distribution
according to a Shapiro-Wilk test. Thus, we used Friedman tests to
determine the statistical significance with α = 0.05 for the overall
graph conditions and a Bonferroni corrected value of α = 0.0125 when
dividing our results by size and modularity. A post-hoc Nemenyi-
Damico-Wolfe-Dunn test was run to determine pairwise significance
between the sampling strategies.

Fig. 9 shows the average rating of cluster quality with significant
pairwise differences listed above each error bar. The performance of
these strategies is significantly different overall and under each graph
condition as indicated at the bottom of each subfigure.

Discussion. REN and RJ exhibit similar perceived cluster qual-
ity and generally perform better than the other strategies in the study,
which supports H4. As these strategies are not restricted to local areas
of the graph and have good spread, the strategies are likely to sam-
ple from all clusters. REN and RJ can collect more edges. Thus,
they are likely to preserve the perceived density of the clusters as well
as the number of clusters perceived by the participant. Although RN
preserves node distributions, fewer edges are retained, which causes
the cluster boundaries to become obscure and difficult to identify. In
our interview, some participants could not perceive any clusters in RN
sampled graphs with low modularity.

H5 is only partially supported as RN has comparable or even better
performance than FF for high modularity graphs. Although the effect
size is small, the participants reported different reasons for their rat-
ings. For RN, although the graph density is low after sampling, the
positions of the remaining nodes provide an important cue for estimat-
ing cluster structures. FF has a higher density as it iteratively explores
incident edges. However, distant clusters could be left out completely.

The performance of RW varies with graph modularity, but is insen-
sitive to graph size, providing support for H6. The random walker of
RW can be trapped by densely connected components. These compo-
nents are well preserved but the strategy can miss clusters. Participant
interviews confirm that missing entire clusters is particularly severe
for RW and influences their perception of cluster quality.

We conducted a metric evaluation of our graphs to provide a com-
parison (Table 6). RW and FF perform best at preserving average node
number and the edge density for each cluster. However, REN and RJ
perform best according to the perceived cluster quality. To investigate
which metrics best match the ratings in our experiment, we compute
several metrics on our stimuli (Table 6). The bold numbers in this ta-
ble are the average metric values that most closely match those found
in the original graph before sampling. We found that REN and RJ
perform well in terms of average cluster number. These algorithms
sample globally, preserving most of the clusters in the original graph.
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Figure 9. The average rating (bottom number of each column) of cluster quality for each graph condition. Error bars indicate 95% confidence
intervals. Pairwise significant differences are indicated above each bar. Friedman test statistics appear at the bottom-right corner of each chart.

Graph
N: 1024, M: L N: 1024, M: H N: 2048, M: L N: 2048, M: H Overall

M CN CS ER M CN CS ER M CN CS ER M CN CS ER M CN CS ER

Original 0.55 4 256 0.50 0.68 4 256 0.15 0.67 8 256 0.50 0.80 8 256 0.15 0.68 6 256 0.33
RN 0.77 4.6 14.0 0.15 0.80 4.3 15.9 0.07 0.84 2.4 21.7 0.08 0.88 4.1 26.4 0.02 0.82 3.8 19.5 0.08

REN 0.62 6 14.0 0.15 0.72 4.0 50.0 0.03 0.73 8.0 50.2 0.17 0.85 8.0 50.4 0.02 0.73 6.2 48.4 0.10
RW 0.59 4.2 48.2 0.20 0.57 4.4 48.0 0.20 0.70 8.0 51.5 0.19 0.74 6.0 68.2 0.03 0.65 5.6 54.0 0.16
RJ 0.60 4.9 41.5 0.22 0.69 4.0 50.5 0.03 0.72 8.0 51.0 0.16 0.83 8.0 51.0 0.02 0.71 6.2 48.5 0.11
FF 0.56 4.9 41.8 0.27 0.45 6.5 33.5 0.62 0.69 7.5 53.9 0.17 0.66 5.0 80.8 0.03 0.59 6.0 52.5 0.27

Table 6. Metrics computed on the experimental stimuli: average modularity (M), average number of clusters (CN), average cluster size (CS), and
average external/internal edge ratio (ER). Communities were computed using Blondel et al.’s method [10]. Numbers in bold indicate the values that
most closely match those of the original unsampled graph.

Cluster number is probably of higher perceptual importance as it is
easier to be perceptually estimated. This finding was supported by our
participant interviews. Many participants reported that they favored
cluster number over cluster density or inter-cluster links when rating
perceived cluster quality.

5.3 Experiment III: Perception of Coverage Area
The coverage area of a sample provides users with an overview of the
data and the patterns in it. It is inherently hard to quantify using met-
rics. A good sampling strategy should preserve this overview of the
graph. Thus, understanding how different sampling strategies influ-
ence this coverage area is crucial. It is important to study this problem
from a perceptual viewpoint, complementing results of metric experi-
ments as graphs with the same statistics can be perceived differently.

Hypotheses. REN and RJ can generate good node and edge distri-
butions simultaneously. Thus, we conjecture that the graphs created
using these two strategies will have a larger perceived coverage area.
For a scale-free networks, RN can create sparse and disconnected sam-
ples, which reduces the coverage area. For this reason, we believe that
RN will likely have lower perceived coverage area. RW and FF are
both sensitive to graph modularity. Thus, these strategies are likely
to sample a greater number of nodes from locally dense components.
Thus, we have the following hypotheses:
H7 REN and RJ likely have the largest perceived coverage area.
H8 RN is likely to have a smallest perceived coverage area.
H9 RW and FF’s performance vary depending on graph properties.

Testing Conditions and Data Generation. We adopted a within-
subject study design to compare the five sampling strategies on per-
ceived coverage area. Four additional factors are tested: graph model,
graph size, model parameters, and random seeds (Table 7):

2 graph models (Barabási-Albert model [7] and Sah et al.’s model [46])
2 graph sizes (small=1024 nodes, large=2048 nodes)
2 corresponding parameters for each graph model
3 random seeds (3 different seeds)

× 3 repetitions

72 trials per participant
× 24 participants

1728 trials in total

Table 7. Testing conditions of Experiment III and number of trials.

In contrast to our previous studies, coverage area is a global prop-
erty and thus very hard to quantify. In order to avoid the bias induced

from a single graph generation model, this experiment used both mod-
els present in experiment I and II. The procedures are the same ones
as described in Sections 5.1 and 5.2.

Task and Procedure. We followed a similar procedure to that of
Experiment II. As it is difficult to judge how well the coverage area
is preserved without a reference, six visualizations (the original graph
and five sampled graphs) were displayed in a 2× 3 matrix similar to
Fig. 2. The participants rated the sampled graphs using a five-point
Likert scale, according to the coverage area of the sample.

After a pre-experiment interview, we provided the participants with
a training session, which consists of four practice trials. This session
helped the participants to become familiar with the task and system.

The trials were divided into four blocks based on graph models
and sizes. Blocks were counterbalanced between participants. The
2× 3× 3 trials within a block were randomized to avoid learning
and fatigue effects. Visualizations were rotated and mirrored to avoid
memorization effects. Each participant took approximately 30 minutes
to complete this experiment. A post-study interview was conducted to
understand how the strategies influenced the participants’ decisions.

Participants and Apparatus. A total of 24 participants (8 females,
aged 21 to 30 (mean = 24.8, SD = 1.9)) from our university were re-
cruited for this experiment. All of them had normal or corrected-to-
normal vision. The setup in Experiment II was reused here.

Results. The ratings did not follow a normal distribution according
to the Shapiro-Wilk test. Thus, we also adopted a Friedman test with
α = 0.05 for the overall graph conditions and a Bonferroni corrected
significance level of α = 0.00625 when dividing the data by factor. A
post-hoc analysis was conducted as in previous experiments.

Fig. 10(a) shows the average rating of the perceived coverage area
under each graph condition, whereas Fig. 10(b) shows the perceived
coverage area ratings overall. Friedman statistics are provided in the
bottom right corner of each subfigure.

Discussion. H7 is partially supported as REN and RJ generally per-
form best in this experiment. FF surprisingly exhibits a comparable
performance with RJ for Barabási-Albert [7] (BA) generated graphs.
Graphs generated by BA have a low average node degree, which im-
pedes the “fire” in FF. By frequently restarting at new random nodes,
FF behaves similar to RJ, explaining their similar performance.

H8 is not supported because RN has significantly better perfor-
mance than RW for six of the conditions and overall. In the post-study
interview, many participants reported that although RN drops many
edges, it preserves an overall node distribution, which helps estimate
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Figure 10. (a) Average rating (bottom number of each column) of perceived coverage area for each condition. The top row shows the graphs
generated using Barabási-Albert model [7] while the bottom row shows the graphs generated using Sah et al.’s method [46]. (b) Average rating
for the perceived coverage area under all of the eight conditions. (c) Percentage of pixels covered by the sample graph when compared with the
unsampled graph. Friedman test statistics are reported in (b) and (c).

the graph shape. By contrast, RW misses many areas of the graph
entirely, which makes RN have a larger perceived coverage area.

H9 is supported as RW and FF vary under different graph condi-
tions. Notwithstanding FF, the performance of RW varies with graph
modularity. From Experiment II, RW can sometimes get trapped in
dense connected local structures, which explains why RW has low per-
ceived coverage area when the graph modularity is high.

We also computed the percentage of pixels covered by the nodes
and edges of each visualization compared with the unsampled graph
(Fig. 10(c)). REN and RJ perform well for both models. RW is simi-
lar to RN in terms of these percentages for graphs generated with the
BA model [7]. However, the perception rating of coverage area for
RN is significantly higher, as reported by the participants in the study.
Similarly, the perceived coverage area of RW, REN, and RJ are very
different from the percentages for the graphs generated by Sah et al.’s
model [46]. These findings show that the perceived coverage area of
sampled graphs can differ from the metric results.

6 DISCUSSION

Our experimental results show that a human-centered perspective can
complement metric evaluation when evaluating graph sampling ap-
proaches. Depending on the sampling algorithm used, graph features
can be perceived differently when compared to metric experiments.
In Experiment I, when a high degree node was preserved in Random
Walk, it was most likely perceived as high degree node. In the metric
experiments, Random Walk preserved a small number of high degree
nodes. In Experiment II, many cluster quality metrics were computed
but only the results of Cluster Number matched the perceived quality.
In Experiment III, the percentage of pixels covered by Random Node
and Random Walk are similar, but participants felt that Random Node
has a larger perceived coverage area. From these results, we provide
the following recommendations for sampling network visualizations:

Recommend Random Edge Node and Random Jump for Global
Structure and Cluster Quality. Random Edge Node and Random
Jump perform well in both Experiment I and III. The perceived cover-
age area and cluster quality are high using these sampling approaches.

Recommend Random Walk for Perceived High-Degree Nodes.
Random Walk has the best performance under all graph conditions
in Experiment I. When high degree nodes are present in the sampled
graph, they are perceived as high degree nodes. However, this strategy
has lower perceived cluster quality and coverage area. Random Walk
can use multiple starting nodes to alleviate this issue.

Avoid Random Node unless for specific requirements. The other
sampling strategies outperform Random Node in experiment I and II.
Although Random Node maintains a good coverage area, its level of
edge filtering makes it difficult for people to identify structures. Thus,
we would recommend avoiding it unless there is a clear reason to use it
such as reducing the visual clutter caused by a large number of edges.

Random Walk and Forest Fire are Modularity sensitive. We
found that Random Walk and Forest Fire are more sensitive to mod-
ularity than to graph size. Thus, on graphs with these properties, we
must consider what visual factors we want to preserve as some can be
obfuscated by the sampling process.

7 CONCLUSION

In this work, we provided the first study of how graph sampling strate-
gies can influence the perception of node-link visualizations. Our pilot
study identified three important visual factors that should be preserved,
namely, high degree nodes, cluster quality, and coverage area. We
conducted three controlled experiments to evaluate the effects of these
sampling strategies on the perception of these visual factors. Our re-
sults show that Random Edge Node and Random Jump perform well on
the perceived cluster quality and coverage area. For Random Walk and
Forest Fire, the visual factors can vary with graph properties such as
modularity. Although Random Walk retains fewer high degree nodes
in sampled graphs, these nodes are more likely to be perceived as high
degree when compared to other strategies. These results compliment
the metric evaluations conducted in the graph mining community and
provide further impetus for the study of the perceptual effects of sam-
pling on visualizations.

In future work, we would like to examine false positives. In partic-
ular, we want to investigate whether users see a high degree node or a
cluster that does not exist in the original data after sampling. Secondly,
we have only looked at perceived cluster quality at a high level. It
would be important to investigate the perception of other cluster prop-
erties in graph samples such as cluster density or fuzziness. Finally,
we need to investigate the advantages and disadvantages of sampling,
from a perceptual perspective, and apply our results in real settings.
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